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Osciladores lineales

mx = —KX
x = Asin (wt + ¢)
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Osciladores no lineales: el péndulo doble
—————

X1 = /1 Sin 6’1

X9 /1 Sin 91 +/2 Sin 92
y1 = —Il1 COS 04

y> = —l1cosfq — |5, cosb,

Double Pendulum at t=0 seconds
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El péndulo doble: ver la complejidad
—————

Tiempos antes de dar
la primera vuelta:
+10V(Vg) (verde)
100~(}g) (rojo)
+1000V(Vg) (morado)
«10000~(}g) (azul).
*Condiciones iniciales
gue no llevan a dar
una vuelta antes de
10000~)g se han
dejado blancas




Osciladores no lineales: ecuacion de Duffing
———
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Ecuacion de Duffing: seccion de Poincaré
——

phase space Poincarée section
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Ecuacion de Duffing: Cuencas de atraccion




Control de fase en modelo de masa-muelle
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PHASE CONTROL IN THE MASS-SPRING
MODEL WITH NONSMOOTH STIFFNESS
AND EXTERNAL EXCITATION
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Departamento de Fisica, Universidad Rey Juan Carlos,
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The control of chaotic dynamics in a nonlinear mass-spring model with nonsmooth stiffness
is analyzed here. This is carried out by applying the phase control technique, which uses a
periodic perturbation of a suitable phase ¢. For this purpose, we take as prototype model a 2
system consisting of a double-well potential with an additional spring component, which acts
into the system only for large enough displacements. The crucial role of the phase is evidenced by
using numerical simulations and also by using analytical methods, such as the Melnikov analysis.
We expect that our results might be fruitful with implications in some mechanicsal problems such
as suspension of vehicles, among others, where similar models are extensively used.

Int. ], Bifurcation Chaos 2013.23, Downloaded from www.worldscientific.com

by CITY UNIVERSITY OF HONG KONG on 01/10/14, For personal use only,

Keywords: Phase control; nonlinear oscillations; Melnikov criterion; chaos; nonsmooth dynamical
svstems.

P4 ai—x+ 2+ k(x — h)O(x — h) AR

(c) (d)

Fig. 10. Plots of the basins of attraction of our system (in the phase plane (zr,y = %)) for (a) F=03, k=045 and h = 0.1

- i Ll . 2 5 S R , 2 X 4 SN
; without control in which chaotic motions take place, (b) F' = 0.26, k = 0.45 and h = 0.1 in which the regular motions take
E Slﬂ ( rLL-'ft I (ID) —_— F S]H(wt ) & place, (¢) and (d) with control (£ = 0.2): (¢) @ = 7w and (d) @ = 0. Finally, we observe the important influence of the phase

since the basin structure is altered by the phase effects.




Resonancia
S

El fendmeno de la
resonancia, aunque
bien conocido, es
todavia bajo estudio




RESONANCIAS NO LINEALES
=

Ruido blanco y forzamiento
periodico

Signal cadtica y forzamiento
periodico

Ruido sin forzamiento
externo

* Vibrational resonance—— ¢ Dos forzamiento armonicos
Q>

* Stochastic resonance ——

* Chaotic resonance —

* Coherence resonance ———

Rajasekar, S., Sanjuan, M.A.F.: Nonlinear Resonances. Springer, Cham
(2016)




Energy harvesting

Usar la energia ambiental para alimentar aparados eléectricos portatiles
La posibilidad de no depender estrictamente solo de las baterias
Los aparados funcionen por mas tiempo de forma mas sostenible.

Bandwidth comparison linear and bistable
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Energy harvesting: resonancia vibratoria
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|—2%)—yv = F coswt+ f cos
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Energy Harvesting Enhancement
by Vibrational Resonance

Piezoceramic patches
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The idea to use environmental energy to power electronic portable devices is becoming v
popular in recent years. In [act, the possibility of not relying only on batteries can provide dev
longer operating periods in a fully sustainable way. Vibrational kinetic energy is a reliable and
widespread enviranmental energy, that makes it a suitablo energy source to exploit. In this paper, L L 1
we study the ¢ response of a bistable system, by using a double-well Duffing oscillator, 0 20 40 60 80 100 120 140
connected (o a circuit through piezoceramic elements and driven by both a low (LF) and a f
high frequency (I1F) forcing, where the HF forcing is the environmental vibration, while the 3 2 3 : i 1 2
LF is controlled by us. The response amplitude at low-frequency increases, reaches a maximum 2 (a) %
and then decreases for a certain range of HF forcing. This phenomenon is called vibrational
resonance. Finally, we demonstrate that by enhancing the oscillations we can harvest more
electric energy. It is important Lo Lake into accounl that by doing so with a forcing induced by llllf“[lll) ]||l|{” } ”|I|||' l‘”|”|'| ”)“”[ 08
OJrHl >0.6 i
R il o
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Keywords: Energy harvesting; vibrational resonance. >

research field. One recent idea is to power such
small electronic devices by using energy available
in their environment. This is the core of so-called
energy harvesting. 'The main goal that energy har- - - . 1

1. Introduction

In the last few years, a quick devclopment has
occurred in the miniaturization capability of elec-
tronic devices. On the other hand, the same

improvement speed has not been comparable for
the energy density available in batteries that pro-
vide the power for such devices, when operating
in stand-alone configurations Paradiso & Starner,
2005). Thus, the possibility to overcome the limi-
tations related to the power requirement of small
electronic components has become an important

vesting aims to achieve is to reduce the requirement
of an external source as well as the maintenance
costs for periodic battery replaccment and the
chemical waste of conventional batteries. Due to
its diffusion, an interesting possibility has received
growing aitention, i.e. converting the micro-kinetic
energy, mostly available as random motion often

1430019-1
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Energy harvesting: optimizacion
———

FIG, 1: This figare plots the scheme of the harvester considered,
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Optimizing the Electrical Power in an Energy
Harvesting System
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1. Introduction has grown

interesting opeu research field,
ling.

chanical vibrations are a possi-

bla and reliable enerov source that can be exleited

A=0.015

Tt it possible, all around s, to see small but. power-
ful electrical devices eresdy for energy. In fact, the

A=0.007

0.01
B 14 0.07
0.008

0.008 12 0.06
— ‘ 0.006 0.05
; 08 ¢ 0.04
0.004 0.6 0.004 0.03
i 04 s 0.02
¥ 0.2 0.01

0 002 004 006 008 041

0 002 004 006 008 01
F

F




Sistemas con retraso
s

La propiedad tipica de un Sistema con retraso es que la evolucion
futura del sistema no depende solo de su estado presente sino que
de su historia

x = f(x,x;)

x; = x(t — 1)

Duffing sobreamortiguado con retraso

it =z+z,— (14 a)z’

Esta propiedad puede transformar un sistema con dinamicas
sencillas en uno con dinamicas mas complejas.




Bogdanov-Takens resonance in ENSO like oscilator

]
x=ax; +x— (1 +a)x3+ FsinQt

Nonlinear Dyn (2018) 91:1939-1947
https:/doi.org/10.1007/511071-017-3992-1
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Xy = x(t — 1)
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Abstract We analyze the oscillatory dynamics of a 1 Introduction z L
time-delayed dynamical system subjected toa periodic S 1 77 = i A r\ m ;\ i I H 1 E;' ﬂ
external forcing. We show that, forcertain values of the Different resonance phenomena play a key role in ~ Z :_\' e A f\ “ f il \ \ 14}
delay, the response can be greatly enhanced by a very the sciences. Examples, beyond the simplest case s :' f~d . ‘”\ \ | \ \ “ ’ | { ui ‘
small forcing amplitude. This phenomenon is related of a linear system forced at its natural frequency, = 0} - 0; S osp 7 | r | J / E \ \ T
to the presence of a Bogdanov—Takens bifurcation and include stochastic resonance [1,2], chaotic resonance % { 5 Al ’ \ \ ’ % J ’ ‘ <t ¥ J \
displays some analogies to other resonance phenom- [3], coherence resonance [4] and vibrational resonance > y S % il \ / & \ ’ ‘ , \ E et
ena, but also substantial differences. (VR) [5]. For a recent monograph dealing with all . Y :QJ" | f ‘ / \( || 06+ l
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nal to obtain chaotic resonance. It is also possible to
have noise-induced resonance in the absence of exter-
nal periodic forces, a phenomenon called coherence
resonance, A nonlinear system driven by a biharmonic

Solutions as a function of 7 for fixed o. The Bogdanov — Takens bifurcation
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Delay induced resonance
———

International Journal of Bifurcation and Chaos
(© World Scientific Publishing Company

Delay-Induced Resonance in the Time-Delayed Duffing Oscillator

Julia Cantisén, Mattia Coccolo, Jesus M. Seoane, Miguel A.F. Sanjuan
Nonlinear Dynamics, Chaos and Complexr Systems Group, Departamento de Fisica
Universidad Rey Juan Carlos, Tulipdn s/n, 28933 Mdstoles, Madrid, Spain
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The phenomenon of delay-induced resonance implies that in a nonlinear system a time-delay
term may be used as an effective enhancer of the oscillations caused by an external forcing
maintaining the same frequency. This is possible for the paramaters for which the time-delay
induces sustained oscillations. Here, we study this type of resonance in the overdamped and
underdamped time-delayed Duffing oscillator, and we explore some new features. One of them
is the conjugate phenomenon: the oscillations caused by the time-delay may be enhanced by
means of the forcing without modifying their frequency. The resonance takes place when the
frequency of the oscillations induced by the time-delay matches the ones caused by the forcing
and vice versa. This is an interesting result as the nature of both perturbations is different. Even
for the parameters for which the time-delay does not induce sustained oscillations, we show that
a resonance may appear following a different mechanism.

Keywords: Bifurcation analysis, Duffing oscillator, Resonance, Delay, Delay-induced resonance.
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Feliz 60 vueltas a
nuestra estrella




