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Tulipán s/n, 28933 Móstoles, Madrid, Spain

Department of Physics, Harvard University
Cambridge, Massachusetts 02138, USA

Miguel A. F. Sanjuán

Nonlinear Dynamics, Chaos and Complex Systems Group
Departamento de F́ısica, Universidad Rey Juan Carlos

Tulipán s/n, 28933 Móstoles, Madrid, Spain
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Abstract. We present a review of the different techniques available to study

a special kind of fractal basins of attraction known as Wada basins, which have
the intriguing property of having a single boundary separating three or more

basins. We expose several approaches to identify this topological property that
rely on different, but not exclusive, definitions of the Wada property.

1. Introduction. The origin of Wada basins dates back to 1917, when Kunizo
Yoneyama published a work on topology where he described how to divide a region
of the plane in three or more connected sets sharing a common boundary [31]. He
attributed the authorship of the original procedure to his advisor Takeo Wada, and
since then these intricate topological constructions were called Wada lakes. At first,
the intriguing properties of Wada lakes were studied within a topological context
[15]. For example, the Polish topologist Kazimierz Kuratowski showed that if a
boundary separates at the same time three or more connected regions in the plane,
then the boundary must be an indecomposable continuum [17, 25]. Years later,
Wada lakes were studied by James Yorke and collaborators under the perspective
of dynamical systems [16, 21]. They analyzed the set of initial conditions leading
to a particular attractor, called the basins of attraction, in a forced damped pendu-
lum. The authors demonstrated numerically that for a particular set of parameters,
the forced damped pendulum presents three basins of attraction sharing the same
boundary, that is, they are Wada basins. The Nusse-Yorke condition to assert the
Wada property in [21] was based on the computation of the unstable manifold of

2020 Mathematics Subject Classification. 37M05, 37M21, 65P20, 28A80, 37C70.
Key words and phrases. Wada basins, Wada detection, fractals basins, numerical methods,

predictability.
∗ Corresponding author: Alexandre Wagemakers.

717

http://dx.doi.org/10.3934/dcdsb.2020330


718 ALEXANDRE WAGEMAKERS, ALVAR DAZA AND MIGUEL A. F. SANJUÁN

a saddle point, which intersected all the three basins. This is how an apparently
inconceivable geometry arose in such a simple system as the forced damped pen-
dulum. The cumbersome structure of the Wada basins implies a particular kind of
unpredictability [7], since a small perturbation in the initial conditions lying on a
Wada boundary may lead the trajectory to any of the system’s attractors. Since
the pioneering works of Yorke and collaborators [16, 20, 21, 23], the Wada property
has been found in many different cases: chaotic scattering [24, 14], Hamiltonian
systems [2], fluid dynamics [28], interaction between waves [5], delayed systems [9],
black hole shadows [6], etc.

In most of these works, the authors used the Nusse-Yorke condition mentioned
earlier. However, Daza et al. [10, 8, 30] have recently proposed three new methods
to test for the Wada property. Each one relies on a different perspective of Wada
basins and, consequently, they extend our understanding of this property. Also,
these three algorithms can reduce considerably the computational efforts and enable
the identification of the Wada property in a wider variety of systems and situations.
The main goal of this paper is to review the essential properties of each of these
three methods, providing a comparison of their main features. The information
is organized as follows. First, we describe the Nusse-Yorke computational method
that tracks an unstable manifold of a unstable periodic orbit. In Sec. 3 we describe
the grid approach, a numerical test based on the successive refining of the grid.
Section 4.1 is devoted to the merging method, a quick graphical test to detect
Wada basins. Last but not least, the saddle-straddle method to identify Wada
basins using the chaotic saddle is presented in sec. 5. A good description of some
of the invariant sets involved in these methods can be found in [27]. Furthermore,
all the methods are illustrated through several paradigmatic examples. Finally, we
conclude comparing their main advantages and drawbacks.

2. Crossing three basins: The Nusse-Yorke method. We should start with
a historically important method that has been the only one available for many years.
It exposes an interesting connection between the Wada property and the presence
of unstable periodic orbits in the observable phase space. To assure that the basin
is Wada, the following condition must be fulfilled:

Condition 1: If P is an unstable periodic orbit accessible from a basin
B1, its unstable manifold must intersect every basin.

It is possible to understand why this condition is necessary with a simple picture
of a two-dimensional phase space with three basins B1, B2 and B3. Suppose an
unstable periodic orbit in the phase plane labeled P in Fig. 1 and its unstable and
stable manifold. The unstable manifold of P intersects the three basins represented
by three small disks of different colors. If we compute the preimages F−1(Bj) of
these small sets under the action of the dynamical system as time goes backward, we
observe a stretching of the sets along the stable manifold and a contraction along the
unstable manifold. As time goes backward, the preimages approach successively the
stable manifold and become exponentially stretched. The repetition of the operation
n times leaves us with an image of a layered sequence of basins B1, B2 and B3 each
time closer to the stable manifold. In the limit, all points on the stable manifold of
P are arbitrarily close to the three basins, therefore, the stable manifold of P is a
Wada boundary.

Unfortunately, the condition 1 is a necessary but not sufficient condition to assure
that the basin has the Wada property. The system may present other unstable
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Figure 1. Sketch of the condition 1 of the Nusse-Yorke
method. The small disks represent areas of the basins B1, B2 and
B3. The unstable manifold of the unstable periodic orbit P inter-
sects the three basins. The preimages of the disks are stretched
exponentially and asymptotically approach the stable manifold,
which ultimately is the Wada boundary.

periodic orbits which do not fulfill condition 1. In this case, we have only partially
Wada basins. To assure that the basin is Wada one of the following conditions must
be satisfied:

Condition 2A: If there is a periodic orbit P that satisfies condition 1, the
basin B satisfies the Wada property if the stable manifold of such saddle
point is dense in the boundary of all basins.

Condition 2B: If there is a periodic orbit P that satisfies condition 1, the
basin B satisfies the Wada property if such saddle point is the only ac-
cessible orbit from basin B. In case that there is more than one accessible
periodic orbit; every unstable manifold must intersect all basins.

Condition 2C: If there is a periodic orbit P that satisfies condition 1,
the basin B satisfies the Wada property if such saddle point generates a
basin cell.

Condition 2A is extremely difficult to verify even in the simplest cases. The
second condition requires to find all accessible periodic orbits. If the system presents
more than one, the unstable manifold of each one must intersect all basins. The
last condition 2C involves a structure called basin cell which is a trapping region
formed by pieces of the stable and unstable manifolds of a boundary periodic orbit.
If a basin cell is found, it means that there is only one accessible orbit.

2.1. Description of the Nusse-Yorke method. The following routine is an at-
tempt to go through the verification of the conditions described earlier. It should
be fit for ODEs, Hamiltonian and maps.

1. First, we must have a graphical description of the basins on a finite grid.
2. Find as many accessible periodic orbits as possible.
3. Plot the unstable manifolds of every accessible periodic orbit and verify that

they intersect all basins.
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4. One of the following conditions must be checked:
(a) Verify the density of the stable manifold of the accessible orbit. This is a

possibility but we do not have the numerical tool to do this.
(b) Verify that all accessible orbits have been found. To accomplish this task

we sweep through the phase space in order to be sure that there are no
elusive orbits hidden.

(c) Construct a basin cell. Plot the stable and unstable manifolds of the ac-
cessible orbit, and construct a trapping region. It is important to remark
that basin cells are only present in dissipative systems. The existence of
a basin cell assures that there is only one accessible periodic orbit.

The steps (1), (2), (3), (4b) and (4c) can be executed with available numerical
packages such as Dynamics [22]. However, the search for the unstable periodic orbit
and the computation of the unstable manifolds requires mastering the software and
a detailed study of the dynamical system. It is unclear if these tasks could be fully
automated, but certainly it would not be straightforward. As a matter of fact,
most of the work on Wada basins prior to 2015 has been devoted exclusively to
apply the Nusse-Yorke condition to a particular system with fixed parameters at a
time [24, 29, 1, 2, 33], given the difficulty of the application of this method to each
particular case.

2.2. Examples. For illustrative purposes, we present an application of the Nusse-
Yorke method for the paradigmatic forced damped pendulum [16] in two different
regimes. The first regime presents a fractal phase space with the Wada property,
while the second example can only be classified as partially Wada. The forced
damped pendulum is given by the equation

ẍ+ 0.2ẋ+ sinx = 1.66 cos t, (1)

and it has three attractors that define three basins in its phase space (x, ẋ), depicted
in Fig. 2(a).

An exhaustive search of unstable periodic orbits shows a single period 3 orbit on
the boundary of the basins. The unstable manifold is shown with black dots over
the basin of attraction in Fig. 2(a). It clearly intersects the three basins, we can
therefore conclude that this basin is Wada, since condition (4c) has been positively
checked.

However, increasing the forcing amplitude to 1.71 leads to a different situation
where the system does not exhibit the full Wada property. We have found two
different unstable orbits on the boundary. One of these orbits has its unstable
manifold plotted in Fig. 2(b). This manifold only intersects two basins. The other
unstable orbit on the boundary has its unstable manifold crossing the four basins
(not shown). We can conclude that the basin is only partially Wada.

The numerical techniques used for these computations is the Quasi-Newton
method with random initial seeds in the phase space to track the unstable or-
bits. The unstable manifolds are obtained iterating small segments very close to
the saddle. These techniques are available in the numerical software Dynamics [22].

3. Down the scale: The grid approach. Each of the numerical methods that
we describe here rely upon a key observation on the properties of Wada basins that
allows to establish a numerical test. But before starting, we proceed establish some
conventional notation to describe the basins of attraction.
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(a) (b)

Figure 2. Wada detection with the Nusse-Yorke method
(a) Basins of attraction of the forced damped pendulum ẍ+ 0.2ẋ+
sinx = 1.66 cos t, with the unstable manifold of a period three orbit
(crosses on the basins). The unstable manifold intersects the three
basins. (b) Basins of attraction of the forced damped pendulum
ẍ + 0.2ẋ + sinx = 1.71 cos t. There are four basins and we have
found an accessible periodic orbit whose unstable manifold crosses
only two basins. There is also a period-three periodic orbit similar
to the case in (a). This basin is partially Wada.

We will assume some simple and general hypothesis about the basins. First, we
assume that there is a bounded region Ω containing NA ≥ 3 disjoint regions Bj

where j = 1, · · · , NA. We also assume that there is a rectangular grid of K boxes
P = {box1, ..., boxK} covering Ω whose interiors do not intersect each other. A
typical grid would be 1000× 1000, thus K ∼ 106.

We consider that it is possible to determine to which set Bj belongs each point
x in Ω. In other words, there is a function C with C(x) = j if x ∈ Bj and C(x) = 0
if x is in none of the sets Bj . If the sets are basins, the trajectory for each x ∈ Ω
leads to an attractor labeled by C(x). For any rectangular box denoted as box we
define C(box) = C(x) where x is the point at the center of the box. For convenience
we will refer to this numerical value C as the color of the grid box. Of course other
points in the same box might lead to different attractors.

For the method described hereafter, the important fact about Wada basin bound-
aries is the following:

Given two different boxes i and j with different colors C(i) 6= C(j), we
will always find a third color between the two boxes if the boundary has
the Wada property.

In the grid method, the algorithm looks for this third color by successive refinements
of the basin until a stopping criterion has been met.

3.1. Description of the grid method. Before diving through the different scales
looking for the third color, we need to establish a reference grid, that will determine



722 ALEXANDRE WAGEMAKERS, ALVAR DAZA AND MIGUEL A. F. SANJUÁN

Step 1 Step 2 Step 3

Stop

Stop

Figure 3. Sketch of the grid method. We set up a grid of
boxes boxj covering the whole disk. The center point of each box
defines its color. In the first step, we see that box1 belongs to the
interior because its surrounding 8 boxes have the same color. On
the other hand, box2 and box3 are in the boundary of two attrac-
tors, i.e., they are adjacent to boxes whose color is different. In
the next step the algorithm classifies box2 still in G2 (boundary of
two), while box3 is now classified in G3 (boundary of three). Ideally
the process would keep on forever redefining the sets G1, G2 and
G3 at each step, though in practice we can impose some stopping
condition. This plot constitutes an example of partially Wada
basins.

the accuracy of our algorithm. This reference grid is made of balls b(boxj), which
are the collection of grid boxes consisting of boxj and all the grid boxes that have
at least one point in common with boxj . Thus, in dimension two, b(boxj) is a 3× 3
collection of boxes with boxj being the central box. For each boxj , we determine the
number of different (non-zero) colors in b(boxj) and write M(boxj) for that number.

In each boxj with M(boxj) 6= 1, NA, that is a box which is not in the interior nor
in the Wada boundary, we accomplish the following procedure.

1. We select the two closest boxes in b(boxj) with different colors and trace a
line segment between them. We compute the color of the middle point of the
segment. In case that the color newly computed completes all colors inside
b(boxj), then M(boxj) = NA and the algorithm stops. Otherwise, we compute
two new points in between the three previous ones.

2. In the second step, the color of four points interspersed with the previous five
points is calculated. In the third step, we compute eight points interspersed
with the previous nine and, in general, in the nth step, 2n new trajectories
must be computed. This procedure keeps on until M(boxj) = NA or the
number of calculated points in that segment reaches some maximum value
previously set up. A major computational advantage of this method is that
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the refinement is made in a one-dimensional subspace (the segment linking
the two points), no matter the dimension of Ω.

3. Next, we define Gm to be the set of all the original grid boxes boxj for which
M(boxj) = m. The number of elements in these sets #Gm is the output of
the algorithm: they are the key to decide whether the basin is Wada or not.

For m = 1, all the boxes inside the ball b(boxj) have the same color as they all
lead to the same attractor, so #G1 is the number of boxes that are in the interior
of a basin and is irrelevant for our purposes. The number #G2 is the number of
boxes on the boundary of two basins, #G3 on the boundary of three basins and so
on. To follow the evolution of these sets as the algorithm runs, we call Gq

n the set
Gn at step q.

We say that the system is Wada if lim
q→∞

NA−1∑
m=2

#Gq
m = 0. This simply means that

the grid boxes are either in the interior G1 or in the Wada boundary GNA
after a

sufficient number of steps q.
To illustrate the iterative process we represent an example of a partially Wada

basin in Fig. 3, and we compute the basin boundary for three grid boxes box1, box2,
and box3 on a regular rectangular grid. The first iteration for box1 shows that it
belongs to the interior region G0

1, since the eight boxes surrounding it have the same
color. At this point, we can consider box1 in G0

1 without refining the partition. The
second iteration, for box2, lies in the boundary of two sets because two different
colors are found in its ball b(box2). The subsequent iterations of the algorithm
classify box2 into G2. A different situation arises for box3. The first iteration
classifies box3 ∈ G0

2, because only two colors are found in its ball. However, as far
as we increase the resolution, box3 turns out to be in the boundary of three basins
G1

3.
As previously stated, the basic idea underlying the whole process is that if three

basins are Wada, then it is always possible to find a third color between the other
two colors (similar reasoning can be done for Wada basins with more than three
colors). Notice also that if a boundary separates two basins, then we will only see
those two basins at every resolution.

In order to decide whether a system is Wada, not Wada, or presents an interme-
diate situation, we can count the number of boxes belonging to the boundary of m
different basins. For that purpose we define a useful parameter Wm as,

Wm = lim
q→∞

#Gq
m

NA∑
j=2

#Gq
j

, (2)

where m ∈ [2, NA]. This parameter Wm ∈ [0, 1] takes the value zero if the system
has no grid boxes that are in the boundary separating m basins, and it takes the
value one if all the boxes in the boundary separate m basins. Thus, if WNA

= 1
the system is said to be Wada. Partially Wada basins [32, 33, 34] occur when
0 < Wm < 1 with m ≥ 3, and this parameter provides a useful tool to classify
them.

There is an alternative approach to the grid method developed in [35] and em-
ployed in [18] which uses a fixed grid size ε to compute the equivalent to the pa-
rameter WNA

. There is no selective refinement of the grid to classify precisely the
boxes. The result is an index W called the Wada measure that is a number between
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Figure 4. Wada detection with the grid method. (a) Basin
of attraction of the forced damped pendulum ẍ + 0.2ẋ + sinx =
1.66 cos t, (b) All 1000 × 1000 boxes are labeled either in the in-
terior (white) or in the boundary of the three basins (black). (c)
Histogram showing the number of points N that take q steps to be
classified as boundary of three basins. (d) After reaching a max-
imum, there is an exponential decay of the computational effort
related to the fractal structure of the basins. The log-plot reflects
this tendency.

0 (smooth or partially Wada) and 1 (Wada). This is a less precise calculation but
much faster as it does not check if the boxes have been correctly classified.

3.2. Examples. We present an application of the grid method with the forced
damped pendulum in two different regimes presented in the sec. 2.2.

When applied to these basins, the grid method classifies all the boxes on the
boundary (see Fig. 4(b) as Wada after a small number of steps (below q = 18). The
graph of Fig. 4(c) shows the decay in the number of boxes that are classified as
boundary of three basins. After a peak at q = 3, the computational effort needed
to classify the boxes diminishes. Notice in Fig. 4(d) the exponential decay of the
number of boxes classified as being in the boundary of three. This decay is related
to the fractal structure of the basin. Remarkably, although the number of new
trajectories calculated in each stage scales exponentially, the number of boxes that
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Figure 5. Forced damped pendulum with eight basins. (a)
The following damped forced pendulum ẍ+0.2ẋ+sinx = 1.73 cos t
shows eight basins of attraction mixed intricately. (b) Some boxes
are classified to be in the boundary of eight basins (black dots), but
not all of them (red dots), which is a clear example of a partially
Wada basin. (c) The computational effort presents the usual shape
for the Wada boundary, but the points which are not Wada keep
refining until the algorithm meet the stop criterion at q = 15 (the
red bar at rightmost represent the number of boxes not classified
as Wada at this stage.). The grid method works best in systems
with the Wada property. (d) Evolution of the proportion of boxes
in the Wada boundary (W8 in black) and proportion of boxes in a
boundary which is not Wada (W2−7) as a function of the q-step.
The convergence of W8 is used to determine the stopping rule.

need to be checked decreases exponentially as well, so that the algorithm can be
applied in a reasonable time. Indeed, because of this, the performance is better in
Wada basins than in partially Wada cases, as we show next.

The second example is again the forced damped pendulum, but with slightly
different parameters given by ẍ + 0.2ẋ + sinx = 1.73 cos t. Now the system has
eight basins, depicted in Fig. 5(a). The grid method classifies this case as a partially
Wada basin after q = 10 steps. This can be decided when the parameter W8, that
gives us the proportion of boxes in the boundary of eight basins, is lower than 1,
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as seen in Fig. 5(d). This indicates that not all the boxes on the boundary are in
the boundary of the eight basins. Also, the value of W8 can be used as a stopping
condition: W8 remains constant after q ' 10, meaning that no new Wada points are
being found in finer resolutions. In this regime, the computational cost increases
exponentially in each stage, since the number of new computed trajectories keeps
growing, while the number of boxes that are checked remains constant. The red bar
in Fig. 5(c) is the number of boxes that will keep refining indefinitely.

In the original paper, the grid method was illustrated using discrete maps too
and, after that, it has been successfully applied to the subspaces of delay differential
equations [9] and open Hamiltonian systems [19]. It is also important to clarify that
given the finite resolution of the grid method, it would classify slim fractals [4] as
Wada. From a purely mathematical point of view, these boundaries should not be
Wada since in the infinity it would not be possible to find the third color. However,
from any practical perspective, slim fractals may also display the Wada property at
all accessible scales and the grid method is able to correctly account for it.

4. Fusion of colors: The merging method. In this section, we present the
second method to test Wada basins. We call it the merging method because it is
based on the following observation about Wada basins:

Wada basins can be merged and their boundary does not change.

Now let us set some definitions to be rigorous about the precise meaning of the
previous statement. We say that a point p is in the boundary of a basin Bi if ∀ε > 0,
the open ball centered in p of radius ε, b(p, ε), is such that b(p, ε) ∩ Bi 6= ∅ and

b(p, ε) ∩ Bi
{ 6= ∅, where Bi

{ is the complement of Bi. If the point satisfies the
previous condition for all the basins Bi with NA ≥ 3 basins of attraction, we call
it a Wada point. If all the boundary points are Wada points, then the basin of
attraction has the Wada property, and we call it a Wada basin.

Assuming that we have NA ≥ 3 basins of attraction and each basin Bi has a
boundary ∂Bi that we want to determine. A way to identify the points in the
boundary ∂Bi is to prove that the point p is arbitrarily close to the set Bi and
arbitrarily close to at least one of the other basins Bj . That is, p is in the boundary
∂Bi if ∀ε > 0 the open ball centered in p of radius ε, b(p, ε), is such that b(p, ε)∩Bi 6=
∅ and b(p, ε) ∩ ⋃

j 6=i

Bj 6= ∅.
With this definition, we can obtain as many different boundaries ∂Bi as possible

attractors, since they represent the boundary between the basin Bi and all the other
merged basins

⋃
j 6=i

Bj . We are now ready to provide an alternative (but equivalent)

definition of Wada basins: the basins are Wada if and only if the boundaries obtained
with the previous procedure are the same, that is ∂Bi = ∂Bj for ∀i 6= j, i =
1, . . . , NA.

This alternative definition emphasizes the fact that two Wada basins can be
merged without changing the boundary. More precisely, it is possible to merge up
to NA − 1 basins without any change in the boundary for NA ≥ 3.

As before, we illustrate the merging property using the paradigmatic forced
damped pendulum described by Eq. 1, that is, ẍ + 0.2ẋ + sinx = 1.66 cos t. The
upper-left panel of Fig. 6(a) shows the three basins with the Wada property. The
other three panels display the basins of attraction that result from the merging of
two attractors into one. On top of each basin,, we indicate the colors that have been
merged together (yellow=red+green, magenta=blue+red, cyan=blue+green). It is
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(a) (b)

Figure 6. Graphical description of the merging of basins.
In (a) upper left corner we have the original basin of the forced
damped pendulum described by ẍ + 0.2ẋ + sinx = 1.66 cos t. The
other three panels are the modified basins with two merged basins.
The colors above indicate which of the original basins have been
merged. In (b) The case of the damped pendulum defined by ẍ+
0.2ẋ + sinx = 1.71 cos t is shown, which possesses four attractors.
We have displayed only three of the four possible combinations of
merging. However, these examples are enough to show that the
boundaries are not identical.

important to notice that each color represents a different basin, being impossible to
establish a one-to-one correspondence between basins of different colors. Although
the four basins are different, the boundaries are the same in all the cases, as we
show numerically in the next section.

We can see how the merging operation works in non-Wada basins. The upper-
left panel of Fig. 6(b) shows the basins of the forced damped pendulum defined by
ẍ + 0.2ẋ + sinx = 1.71 cos t, which possesses four attractors. In the other three
panels, we have merged three basins into a single color gray to improve the contrast
of the boundary. If we compare the results of the merging pairwise, we can observe
significant differences between boundaries. The aim of the algorithm described in
the next section is to quantify these discrepancies numerically.

4.1. Description of the merging method. The property that we have just de-
scribed, that is, that Wada basins can be merged without any change in their
boundary, can be used to build a numerical method to test the Wada property.
Formally, all we have to do is to check that the fractal boundaries are the same un-
der the merging of the basins. While it seems an easy task to compare sets visually,
it is a very hard problem numerically. This is because in practice, we always have
a finite resolution and a restricted set of points.

A usual way to compute the basins of attraction is to select the initial conditions
on a grid with linear size ε. The initial condition is at the center of a square pixel of
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Figure 7. Interpretation of the Hausdorff distance. The
figure represents two superimposed slim boundaries computed from
two different merged basins. One of the boundaries is plotted with
red pixels and the other one with green pixels. While it appears
that most of the boundaries overlap, some parts of the red bound-
ary do not coincide with the green boundary. The largest distance
between the two boundaries is represented by a red circle of radius
maxd that corresponds to the Hausdorff distance between the two
sets of points.

size ε that we color according to the final state determined by this initial condition.
The resolution of the computed boundaries will be limited by the size of this pixel,
i.e., by ε. The boundaries computed from merged basins, called the slim boundaries,
may be slightly different even though we have Wada basins. They are not strictly
identical due to the finite resolution imposed by ε, and this holds in spite of any
way of computing the basins.

Then the following question arises: how can we compare these boundaries and
give a reasonable measure of their similarity? In [8], the authors propose to fatten
the slim boundaries replacing each pixel of the boundary by a new fat-pixel of radius
r. The result is a fat boundary that looks similar to the original slim boundary but
with a thicker stroke. Once all the fat boundaries ∂Bi have been obtained, the
algorithm checks whether all the slim boundaries ∂Bi fit in the fat boundaries ∂Bj

pairwise such that ∂Bi ⊂ ∂Bj ∀i, j = 1, . . . , NA. If the test is successful, we say
that the basin has the Wada property for the fattening parameter r. If the test
fails, we can increase the radius r until a radius rmax fixed beforehand is reached.

Here, we propose a modification of this technique using the Hausdorff distance
[11] that measures the longest possible distance (for a given norm) that we must
travel to go from one set to the other set. For a given distance dH between two sets,
we can be sure that any pair of points of the two sets are at a distance d ≤ dH .

Mathematically, we must first define the distance between a single point x and
the set Y :

d(x, Y ) = min
y∈Y

(||x− y||), (3)
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so that the Hausdorff distance can be defined as:

dH(X,Y ) = max{sup
x∈X

d(x, Y ); sup
y∈Y

d(y, X)}. (4)

Computing dH involves finding the minimum distance for each point of each set.
A very large number of pairwise comparisons may be needed if we proceed system-
atically. Fortunately, there are efficient algorithms to find the nearest neighbors
between two large sets of points such as the k-d tree algorithm [13]. The compar-
isons can be shrunk down to a matter of seconds in a regular workstation.

Therefore, after merging the basins and obtaining the slim boundaries ∂Bi, the
next step of the procedure is to measure the Hausdorff distances dH(∂Bi, ∂Bj) for
each pair of boundaries. We represent an example of distance computed between
two different slim boundaries in Fig. 7. Among all these distances, it will be useful
to know the maximum and minimum values maxd and mind for further purposes.
We can connect this with the definition of a basin with the Wada property at the
beginning of the section: the algorithm checks if the points pi in the boundaries Bi

are within a ball b(pj ,maxd) of radius maxd around the points pj of the boundary
Bj .

As a simple rule of thumb to quickly check if the system has the Wada property,
we can test if maxd >> mind. If this is the case, it is likely that at least two of the
boundaries are different. If these two quantities are similar, then a further analysis
is needed to decide whether this distance is small or large compared to the size of
the phase space under consideration. In any case, it is difficult to give a clear cut
and general criterion to decide when a given system possesses the Wada property.
However, we will give examples that will illustrate the use of this distance in the
next section.

The whole procedure described before can be fully automated and the only input
needed is a finite resolution basin. For basins with a resolution of 1000× 1000 and
three different attractors, the merging method takes a few seconds to determine
whether a basin is Wada running in a regular workstation.

The Haussdorff distance can also be connected with the fattening method of the
original paper [8]. For a grid of size ε and a Hausdorff distance dh between the
boundary ∂Bj and the partial boundary ∂Bi, the ratio r = dh/ε is the fattening
parameter r needed to cover the entire set ∂Bi.

Next we summarize the steps of the merging method:

1. The input of the algorithm is a picture of the basins at a given resolution ε.
2. For each basin Bi, we merge the other basins obtaining two-color basins of

attraction made of the original basin Bi and the merged basin
⋃
j 6=i

Bj . By this

process, we get a collection of NA pictures with only two colors.
3. We compute the slim boundaries of the merged basins ∂Bi. In order to do this,

we can simply see if a pixel has pixels of different colors around itself. Given
the finite resolution of the basins ε, these boundaries may appear slightly
different even for Wada basins. For very large basins we can use efficient
numerical techniques of edge detection usual in signal processing of images
[26].

4. The Hausdorff distance dH(∂Bi, ∂Bj) is computed for each pair of slim bound-
aries. We only keep the maximum and minimum distances maxd and mind.
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Dynamical system maxd mind (maxd −mind)/mind Wada?
Forced pendulum NA = 3 0.0365 0.0219 0.667 YES
Forced pendulum NA = 4 0.368 0.0439 7.3826 NO
Forced pendulum NA = 8 0.3976 0.0655 5.0702 NO
Hénon-Heiles Hamiltonian E0 = 0.2 0.0206 0.0168 0.2262 YES
Hénon-Heiles Hamiltonian E0 = 0.3 0.0240 0.0236 0.0169 YES
Newton method NA = 3 0.0300 0.0240 0.2499 YES
Newton method NA = 4 0.0402 0.0350 0.1485 YES
Newton method NA = 5 0.0902 0.0420 1.1476 YES
Newton method NA = 6 0.0780 0.0566 0.3780 YES

Table 1. Results of the computation of the Wada merging
method for different systems with fractal basin boudaries.
Some of these examples show a fractal basin according to the merg-
ing method. All the basins have been computed with a finite reso-
lution of 1000× 1000.

5. If maxd >> mind, we can discard the hypothesis of having a Wada basin. If
maxd ' mind and maxd is “small”, we can conclude that the basin has the
Wada property.

4.2. Examples. We describe here some results of the detection of Wada and par-
tially Wada basins by means of the merging method. The algorithm is tested for
three different systems:

1. The forced damped pendulum as described in Eq. 1, ẍ+ 0.2ẋ+ sinx = F cos t
for three different forcing amplitudes F = 1.66, F = 1.71, and F = 1.73. The
corresponding basins have, three, four and eight attractors respectively, and
only the basin with three attractors has the Wada property.

2. The Hénon-Heiles Hamiltonian [2] described by the equation H = 1
2 (ẋ2 +

ẏ2) + 1
2 (x2 + y2) + x2y − 1

3y
3 and for values of the energy above the critical

level Ec = 1/6 possesses three escape basins in phase space. Here we use two
different values of the energy E > Ec = 1/6, so that we obtain three escape
basins that possess the Wada property, though different fractal boundaries.

3. The Newton’s method to find complex roots [12, 35], which is represented by
the map zn+1 = zn − (zNA − 1)/(rzNA−1) with NA represents the number of
basins of attraction.

In Tab. 1 we summarize the results of the algorithm for the three different sys-
tems. In the case of the basins with the Wada property, the relative distance
(maxd−mind)/mind is usually smaller than 1 (exept for one case). Also, the min-
imum distance mind is in all cases two orders of magnitude lower than the size of
the phase space, so we can consider this number small and therefore the results
accurate.

We can see that in the two examples of fractal basins without the Wada property
the ratio (maxd −mind)/mind is much higher than the other cases. At any rate,
it is up to the user of the method to decide in the end if the basin has the Wada
property for this resolution. For a more accurate response, we present in this review
two other numerical methods that may satisfy any need.

5. Find the chaotic set: The saddle-straddle method. To complete the cat-
alog of numerical methods to detect the Wada property, we present a method that
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relies on the chaotic dynamics of the system. So far, we have been focused on the
structure of the Wada basins. Here we concentrate on a property of these basins
directly linked to the dynamics, that is, the existence of an special subset of the
boundary, the chaotic saddle, that for Wada basins is the only one existing since
there is only one common boundary.

Connected Wada basins are separated by a single connected boundary [16]. In
terms of the dynamics, this means that there is a single invariant set under forward
iteration, i.e., there is only one stable manifold. As shown by Kuratowski [17], this
manifold must be an indecomposable continuum. The existence of only one stable
manifold involves the existence of a only one saddle. Following these arguments, we
can conclude what constitutes the key observation of this third method:

Connected Wada basins do happen in systems with three or more possible
basins and only one saddle, which must be a chaotic saddle.

Therefore, a numerical proof showing that there is only one chaotic saddle in
phase space, would prove the basins to be Wada. We can construct such a proof by
combining two different techniques: the merging method as seen in Sec. 4 and the
saddle-straddle algorithm [3, 22]. This later algorithm produces a certain number
of points arbitrarily close to the chaotic saddle. For this purpose, the algorithm
needs two initial conditions in different merged basins and generates a set of points
on the boundary between the merged basins. If we are able to show that the set of
points is the same for all the pairs of merged basins, we would succeed in proving
that there is only one chaotic saddle and consequently that the basin is Wada.

The saddle-straddle algorithm starts with the two initial conditions on both
sides of a boundary in different basins. Using the bisection method, the segment
connecting the two initial conditions is shrunk to a very small segment of size just
about 10−8 straddling the boundary. As shown in Fig. 8, the end points of the
segment are iterated forward under the dynamics of the system 1 and expands
naturally due to the vicinity of the unstable manifold, while the stable manifold
attracts the segment towards the saddle. As we are pushed away from the boundary,
it is necessary to refine again the segment down to a size below 10−8. The process
starts over and we go on with the process until we have reached the saddle after
a short transient. After a the desired number of iterations, we have a collection of
small segments that are very close to the saddle, we select one endpoint arbitrarily
and we end up with an accurate picture of the saddle.

The saddle-straddle algorithm needs two different initial conditions lying in two
different merged basins. We must proceed systematically to apply the algorithm to
every basin Bi and the basin formed by merging the remainder

⋃
j 6=i

Bj . In the case

that the basins have the Wada property, the chaotic saddles obtained by applying
the saddle-straddle algorithm to the different combinations of merged basins must
coincide.

In the next section, we give the details of the procedure and we explain how to
compare the different sets of points obtained from the algorithm.

5.1. Description of the saddle-straddle method to test for Wada basins.
The saddle-straddle algorithm tracks a saddle that lies in a boundary that separates
at least two basins. It is important to know the NA attractors present in the phase

1Notice that this implies some sort of time discretization of the system by defining a Poincaré
section for example.
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Figure 8. Sketch of the saddle-straddle algorithm. Ini-
tially, two points are selected in such a way that each one lies on a
different basin. Then, a bisection method is applied to reduce the
distance between the two points to a desired accuracy. After that,
the resulting points are iterated and the segment expands, so that
the process must start over again. As a result, we obtain a set of
arbitrarily small segments straddling the saddle.

space region that we are analyzing. However, we do not need to compute the basins
of attraction, since knowing a set of initial conditions leading to these attractors is
enough. We define a pair of basins formed by the basin Bi of the attractor i and
the basin Mi =

⋃
j 6=i

Bj , which is the result of merging the basins of all the other

attractors. We obtain NA different pairs of basins (Bi,Mi) that provide initial
conditions for the saddle-straddle algorithm.

In the following, we will use the term algorithm to refer to the way of computing
the saddles and the term method for verifying the Wada property. The algorithm
computes a set of segments between basins Bi and Mi arbitrarily close to the saddle
at the intersection of the stable and unstable manifolds. The central argument of
the method is that if the computed saddles are the same or sufficiently close from
each other, then there is only one boundary that separates the NA basins. In this
case, the basins have the Wada property.

As we try to compare the different sets of points representing the saddles, we are
faced with a technical challenge. Although the sets are dense in the chaotic saddle,
they correspond to different orbits that depend on the initial conditions used for its
construction. The chaotic orbits are similar, but they never coincide exactly, making
it difficult a direct comparison. However the concept of distance between sets of
points is well defined, as already described in Sec. 4.1. This distance measures the
longest path to connect one set to another set, that is, the largest distance between
any two points of both sets.

After solving the problem of comparing chaotic sets, another question arises:
when do we consider that two sets belong to the same saddle? What is a small
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distance between two sets? To answer these questions, we must first define the
diameter of a set

ds(A) = sup{||x− y|| : x,y ∈ A}. (5)

To put it simply, it is the largest Euclidean distance between any two points of a
set A. If the set is an orbit that belongs to an attractor we have an estimation of
the size of the attractor. This allows us to define the following criterion: if the
measured Hausdorff distance between the sets is small with respect to the diameter
ds of one of the set, we can say that the sets correspond to the same saddle.

We can summarize the steps of the method as follows:

1. First, we classify the attractors of the dynamical system and we assign an
integer i to each basin.

2. We form the pairs of basins as follows: for each attractor, we define the basin
Bi of the attractor and the basin Mi as the union of the remaining basins.
There are as many pairs of basins as attractors.

3. We compute the saddle for each pair of basins using the saddle-straddle algo-
rithm.

4. The saddles are compared pairwise using the Hausdorff distance dH . We
consider that the saddles belong to the same set when the distance dH is
small compared to the diameter of the set ds. In case the saddles have different
diameters, we will pick the largest.

5. If all the previous comparisons are successful, then there is only one boundary
and the basins of attraction possess the Wada property.

Notice that if the distance between two sets is of the same order of magnitude
as the diameter of the set ds, we can discard the hypothesis of having the Wada
property. Another common situation where we can discard the case of Wada basins
is when the diameter of the set is very small (about the size of the straddle segment).
This is an indication of a saddle point on a smooth boundary that separates two
basins.

To correctly measure the distance between the sets, the number of points np
should be large enough. If the sets do not have enough points the distance dH
might be biased.

5.2. Examples. Again, we will test the algorithm on two systems with the Wada
and partial Wada property, the forced damped pendulum and the Hénon Heiles
potential. As we have shown earlier, the forced damped pendulum with three
atractors shows the Wada property. In Fig. 9(a), we show the saddle obtained from
the application of the saddle-straddle algorithm to a basin B1 and a merged basin
M1 of this system. We can see that the saddle is embedded in the fractal boundary
between them. There is only one saddle as it can be interpreted from the results of
the Hausdorff measure between chaotic sets. We denote by Si the saddle obtained
from the pair of basins (Bi,Mi). The results of the comparisons for 40000 points
are: dH(S1, S2) = 0.04686, dH(S1, S3) = 0.04689 and dH(S2, S3) = 0.04650. The
distances dH are very small compared to the diameter of the saddle under study
measured as ds(S1) ' 2π, which confirms our first impression that all sets of points
belong to the same saddle.

In Fig. 9(b) and (c) we have the case of the partially Wada basin for the forced
damped pendulum with three attractors, described by ẍ+ 0.2ẋ+ sinx = 1.71 cos t.
From the two plots we can already conclude that the system is not Wada since
one of the saddles is a saddle point on a smooth boundary.The Hausdorff distances
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(a) (b)

(c) (d)

Figure 9. Computations of saddles with the saddle-
straddle algorithm. (a) The picture represents the chaotic saddle
embedded in the only boundary of the forced damped pendulum
with equation ẍ+0.2ẋ+sinx = 1.66 cos t. (b) We have represented
the computation of the saddle associated to the boundary between
basins B2 and M2 of the forced damped pendulum with equation:
ẍ+0.2ẋ+sinx = 1.71 cos t. In (c) we have the saddle corresponding
to the boundary between basins B1 and M1. (d) shows the chaotic
saddle of the boundary in the Hénon-Heiles Hamiltonian for the
energy E = 0.25.

computed between each pair of sets for 40000 points show clearly that there is not
only one boundary: dH(S1, S2) = 5.604, dH(S1, S3) = 5.604, dH(S2, S4) = 5.604,
dH(S3, S4) = 5.604, dH(S1, S4) = 5.02 · 10−9 and dH(S2, S3) = 0.064. The very
small distance dH(S1, S4) between the saddles S1 and S4 shows that the two saddles
are identical. Also the diameter of these sets ds(S1) = ds(S4) ≤ 1 · 10−8 shows
without any doubt that there is a single saddle point on a smooth boundary between
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Name Type of system Dim. Computation What we need
time

Nusse-Yorke method [21] ODEs Hamiltoni-
ans Maps

2D 1∗ It requires a detailed knowledge of the
basin and the boundaries (accessible
unstable periodic orbit embedded in the
basin boundary).

Grid method [10] Any dynamical sys-
tem

n-D 100 It requires the basins and the dynamical
system to compute parts of the basin at
a higher resolution.

Merging method [8] Any dynamical sys-
tem

n-D 0.01 It needs to know the basins, but not the
dynamical system.

Saddle-straddle method [30] ODEs Hamiltoni-
ans Maps

2D 1 It needs to know the dynamical system,
but not the basins.

Table 2. Comparison of the principal procedures to test if a
basin of attraction has the Wada property. The time noted with ∗

refers only to the computation time and does not take into account
the previous study of the system.

basins B1 and B4. The algorithm reveals that there is another saddle in the phase
space as shown by the distance dH(S2, S3) and diameters ds(S2) = ds(S3) = 2π.
There are two different saddles and all we can say is that the system has at best
the partial Wada property.

Our last example with the Wada property is the Hénon-Heiles Hamiltonian with
an energy above the critical value E = 0.25 > Ec that presents three escape basins.
The straddle set S1 obtained from the pair (B1,M1) is shown in Fig. 9(d). The
computation of the Hausdorff distance for np = 10000 gives the following results
dH(S1, S2) = 0.087, dH(S1, S3) = 0.058 and dH(S2, S3) = 0.085. Despite the
Hénon-Heiles does not have any attractor, it is possible to compare these numbers
against the diameter of the saddle S1: ds(S1) = 1.5. The escape basin of this
Hamiltonian system has the Wada property according to our procedure: all the
distances are small compared to the diameter of the set.

6. Comparison of available methods to assert the Wada property. We
have reported here three different techniques to detect the Wada property in basins
of attraction, besides the already known Nusse-Yorke method, each one with its
own advantages and drawbacks. Table 2 can serve as a quick guide to pick the right
method depending on the nature of the problem. The computation times displayed
in Tab. 2 are estimates relative to the the time taken by the saddle stradle method
to detect the Wada property of the forced pendulum presented in the previous
sections. This task would take about one hour on a normal workstation. Notice
that these times may vary depending on the problem, the specific hardware and so
on. The effort needed to apply the methods is difficult to evaluate directly because
of the required input, such as the basin of attraction on a regular grid.

In the following, we discuss the strengths and weaknesses and we give some
indications about the expected accuracy of each method:

• Nusse-Yorke method. When there is an accessible unstable periodic orbit
in the basin boundary that can be tracked, the Nusse-Yorke method is a good
candidate. It provides a precise answer to the problem. The problems with the
method are related to the need of a detailed study of the dynamical system. In
fact, many works have been devoted to the application of this method to just
one dynamical system with fixed parameters [24, 28, 2, 1]. The computation
of the unstable manifold of the periodic orbit can be burdensome in some
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cases [9, 6]. Also the method is restricted to ODEs, Hamiltonians and maps
showing the connected Wada property. If the result of the test is a Wada
basin, then we have an exact answer as long as we are sure that we have
found all the unstable periodic orbit. It is the weak point of the method.

• Grid method. The grid method is based on the idea that, when a basin
has the Wada property, between two initial condition belonging to different
attractors we will always find an initial condition leading to a third attractor.
It is an interesting method when the basins can be computed easily. It gives a
reliable answer with useful information about the structure of the basin. Also,
it can be easily automated. However, it can be very slow given that for some
boxes the algorithm needs to refine the grid to very small resolutions.

This method can be considered accurate since we have a stopping criterion
based on the number Wm that tells us how many boxes are on the boundary
of m basins. The algorithm stops when |Wm(step+1)−Wm(step)| < ε, being
ε a small positive number previously fixed. For the examples presented in the
text ε = 0.005. It guarantees that the boxes have been correctly classified in
the boundary of NA basins in the case of Wada.

• Merging method. The merging method to detect the Wada property in
basins of attraction hinges on the invariance of the boundary through the
merging operation of basins. This is beyond all doubt the fastest method of
them all, it is fast and easy to implement (about one hundred lines of code
for everything). Also once the basins have been obtained, the method does
not assume anything on the underlying dynamics. If the basin is available
or can be computed quickly it may be the first method to try. It allows a
quick classification of the basins. However, the method is reliable up to the
resolution of the basins and spurious or noisy points in the basins can perturb
the results of the Hausdorff distances.

This method gives us two numbers after its application: mind and maxd,
the smallest and largest Hausdorff distance between the computed slim bound-
aries. The researcher must decide with these two numbers in hand whether
the basin is Wada or not. A rule of thumb to help this decision is taking the
relative distance (maxd − mind)/mind = 2 as a decision threshold. Above
this number we can assume that the system is Wada.

• Saddle-straddle method. This method is based on a very basic observation:
if the basin has the Wada property, then there is only one saddle, and it is
chaotic. When the problem is in the plane it is a powerful technique to
identify the Wada property. The basins of attraction are not needed since
the algorithm relies on the dynamics of the system. We must say that this
method is limited to ODEs, Hamiltonians and maps and is unable to detect
disconnected Wada boundaries.

The accuracy of the test depends directly on the length of the computed
time series, because when two saddles are compared, the Hausdorff distance
decreases as a power of the number of points. From our simulations, at least
104 points are necessary to have a Hausdorff distance below 0.01 for two time-
series from the same chaotic saddle. If the Hausdorff distance is two orders of
magnitude inferior to the diameter of the set, then the time series belong to
the same saddle.

We have so far exposed the published techniques available to detect the Wada
property. However, other approaches might be possible, as for example a modified
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version of the saddle-straddle method by using the stable manifold of the saddle
instead of the very saddle. The strategies exposed in this article explore the Wada
property under different angles, nonetheless we are confident that there might be
other ways to tackle this problem.

7. Conclusions. Proving the Wada property in dynamical systems may require
different approaches adapted to the particularities of the problem under study. We
have described several numerical techniques that reflect the state of the art for
the study of how to detect Wada basins. One of the fascinating aspects of these
techniques is that they all rely on different characteristics that define the Wada
property, and which reveal different aspects of this intricate structure.

A possible and important extension is the application of these techniques to
higher dimensions. The plane is for sure an important case in the study of dynamical
systems, however systems in higher dimension may also present the Wada property.
We should discuss the applicability of each method for dimension three and beyond.
The grid method would need very little adaptation, the basic principle of “finding
the third color” is independent of the dimension. Given that the grid method
operates within a line between points in two different basins, the dimension of the
basin would only affect the performance in the initial computation of the basins,
but not in the successive refinements. We could even replace the full computation
of the basins by computing a few scattered points in a Monte Carlo fashion and
apply the grid method on them. The merging method can also be extended to
higher dimensions. The slim boundaries would be sets of dimension N − 1 that
can obtained reasonably fast with filtering techniques. The Hausdorff metric can
be computed to compare each sets. Again, the major challenge with this method is
the computation of the basin beforehand as the number of grid points grows with
a power of N . The straddle method is restricted to the plane.

Among possible application of this tool in dynamical system is the study of the
space of parameters. The information of the parameter region where the basins are
Wada combined with other measures such as the Basin Entropy [7] and the uncer-
tainty exponent. This would break down the information about the uncertainty of
the phase space into three component.

Also, these new methods broaden the scope of application of the original idea
of Yoneyama to unexpected fields [6], illustrating that it constitutes a very special
property of chaotic dynamical systems usually indicating a lack of predictability
and with a bright future ahead in spite of all the work that has been done so far.
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[4] X. Chen, T. Nishikawa and and A. E. Motter, Slim fractals: The geometry of doubly transient
chaos, Phys. Rev. X , 7 (2017), 021040.

[5] J. C. P. Coninck, S. R. Lopes and R. L. Viana and Ricardo, Basins of attraction of nonlinear

wave–wave interactions, Chaos, Solitons & Fractals, 32 (2007), 711–724.
[6] A. Daza, J. O. Shipley, S. R. Dolan and M. A. F. Sanjuán, Wada structures in a binary black

hole system, Phys. Rev. D , 98 (2018), 084050, 13 pp.
[7] A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin and M. A. F. Sanjuán, Basin entropy:

A new tool to analyze uncertainty in dynamical systems, Sci. Rep., 6 (2016), 31416.

[8] A. Daza, A. Wagemakers and M. A. F. Sanjuán, Ascertaining when a basin is Wada: The
merging method, Sci. Rep., 8 (2018), 9954.

[9] A. Daza, A. Wagemakers and M. A. F. Sanjuán, Wada property in systems with delay,

Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 220–226.
[10] A. Daza, A. Wagemakers, M. A. F. Sanjuán and J. A. Yorke, Testing for basins of Wada, Sci.

Rep., 5 (2015), 16579.

[11] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008.
[12] B. I. Epureanu and H. S. Greenside, Fractal basins of attraction associated with a damped

Newton’s method, SIAM Rev., 40 (1998), 102–109.

[13] J. H. Friedman, J. L. Bentley and R. A. Finkel, An algorithm for finding best matches in
logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209–226.

[14] M. Hansen, D. R. da Costa, I. L. Caldas and E. D. Leonel, Statistical properties for an open
oval billiard: An investigation of the escaping basins, Chaos Solitons Fractals, 106 (2018),

355–362.

[15] J. G. Hocking and G. S. Young, Topology, Dover, New York, 1988.
[16] J. Kennedy and J. A. Yorke, Basins of Wada, Physica D , 51 (1991), 213–225.
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