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ABSTRACT

Stochastic resonance (SR) is widely used as a signal enhancement technique in recovering and enhancing periodic or aperiodic signals
submerged in noise. However, system parameters and noise intensity tend to influence the SR performance. To achieve better resonance per-
formance, several indices are often used to determine these parameters, including signal-to-noise, amplification factor, and cross-correlation
coefficient. Nevertheless, for a linear frequency modulated (LFM) signal, such indices may no longer work and consequently make SR unable
to recover the unknown LFM signal from raw signals. Thus, this limits the application of SR to some extent. To deal with this problem, we
define here a new index to characterize the unknown LFM signal with the help of the fractional Fourier transform. Guided by this index, SR
is thus able to recover the unknown LFM signal from the raw signal. In addition, a cloud model based genetic algorithm is used to achieve an
adaptive SR in order to improve the effectiveness of signal processing.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002134

Stochastic resonance (SR) is a dynamic phenomenon that exploits
the positive effect of the noise to enhance a weak signal and
reduces noise, which attracts much attention. Compared with tra-
ditional denoising techniques, SR will not weaken the internal
signal. Owing to this distinguishing feature, SR has been con-
stantly developed and it can not only process periodic signals but
also aperiodic signals. Although SR is able to process many kinds
of signals, it is difficult for SR to recover the unknown linear fre-
quency modulated (LFM) signal, which is completely hidden in
the noise background. On the one hand, the instantaneous fre-
quency of the LFM signal linearly varies with time so that the
system of SR cannot match the signal well. On the other hand,
the LFM signal submerged in noise is hardly characterized and
identified, but the LFM signal commonly occurs in the signal pro-
cessing field. Hence, it is urgent to achieve its recovery from noise
by SR. In addition, parameter selection is another factor that lim-
its the application of SR so that an adaptive SR theory needs to be

further developed through an excellent optimization algorithm.
As a result, this study intends to handle these problems in order
to achieve quickly the recovery of the unknown LFM signal.

I. INTRODUCTION

Stochastic resonance (SR) is a phenomenon in a nonlinear sys-
tem where an appropriate dose of noise can enhance a weak signal
in the response. It was first proposed by Benzi et al.1 to explain the
periodic recurrence of ice ages. Once it was proposed and observed,
it has attracted much attention. Afterward, many important results
on SR have been found in the past three decades so that a SR the-
ory has been developed gradually and perfected. To date, due to its
excellent performance, SR has been applied into many areas, includ-
ing biology,2–4 chemistry,5,6 physics,7 and so forth. In recent years,
scholars mainly focus on the application of SR in signal processing,
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and many results have been found.8–10 Initially, SR was only used
to process a low-frequency harmonic signal where the orders of
magnitude of the system parameters are 1. In this case, the SR is
usually named small parameters SR. Then, to develop the appli-
cation of SR from low-frequency to high-frequency, researchers
proposed some techniques, such as normalized scale transforma-
tion and general scale transformation.11 Based on these techniques,
SR can manage to process high-frequency signals, and thus SR
can be applied in engineering fields, e.g., fault diagnosis of rotary
machines.12–15

SR not only can process the signals with a harmonic component
but also aperiodic signals, such as aperiodic binary signals. SR has
been used to implement base-band binary signal transmission,16–18

image processing,19 and optical cavities.20 However, besides the ape-
riodic binary signals, there are some other kinds of aperiodic signals
that need to be processed, especially frequency modulated signals.
This is because modulation phenomena commonly occur in the sci-
entific and engineering fields. One of the most important signals
in frequency modulated signals is the linear frequency modulated
(LFM) signal.21–24 In fact, some characteristic signals have the same
characteristic as the LFM signal, for example, the vibration fault sig-
nal of a faulty bearing when rotation speed is linearly rising. Owing
to its importance, many research studies have been conducted and
meanwhile some important results have been obtained.25–28

Although some important results have been reported, there
are still many problems worthy of further research. Different from
the harmonic signal, the instantaneous frequency of the LFM signal
turns large as time goes. So, the frequency spectrum of the LFM sig-
nal has a certain bandwidth. On the one hand, this will lead to the
issue that SR is hard to apply because the system of SR cannot match
well the LFM signal. On the other hand, when the LFM signal is
submerged in a strong noise background, it is difficult to use several
common indices, including signal-to-noise, cross-correlation coeffi-
cient, and amplification factor, to characterize the LFM signal. This
is because The information on the waveform and frequency of the
hidden LFM signal is usually unknown in this case. Therefore, nowa-
days, there is no appropriate index to help characterize the LFM
signal in the noise. Motivated by these issues, this work aims at
proposing a new index in order to recover the hidden LFM signal
from the raw signal.

As is well known, system parameters and noise intensity are
the factors affecting the SR performance. So, parameter selection
has been a problem leading to SR hard to be widely applied. For-
tunately, many algorithms have been proposed that can solve a lot
of optimization problems. Among them, cloud model based genetic
algorithm (CMGA) is a kind of optimization algorithm that has a
good global search ability and a fast convergence speed.29–31 As a
result, CMGA is used for the parameter optimization of SR with
an excellent performance of the algorithm, in order to achieve an
adaptive SR.

The rest of this paper is organized as follows. In Sec. II, the
re-scaled SR theory and the proposed index are introduced and
explained in detail. In addition, several related numerical simula-
tions are carried out in order to verify the effectiveness of the index.
In Sec. III, the adaptive SR based on CMGA is achieved to improve
the SR performance on processing the LFM signal. Finally, the main
conclusions are provided in Sec. IV.

II. THEORETICAL FORMULATION AND NUMERICAL

SIMULATION

In this part, we first introduce the classic SR and the re-
scaled SR theory, and then we give a specific expression of the
proposed index. At last, some simulations demonstrate the process
of recovering an unknown LFM signal based on the index.

A. The re-scaled SR theory and the proposed index

Considering a typical bistable system, the classic SR can be
described by

dx

dt
= ax − bx3 + s(t) + N(t), (1)

in which a and b are the system parameters (a > 0, b > 0). The
function s(t) is the LFM signal,

s(t) = Acos(πγ t2 + 2π f0t + φ), (2)

where A is its amplitude, γ is its chirp rate, f0 is its centroid fre-
quency, and φ is its initial phase. The function N(t) is a Gaussian
white noise with the following statistical properties:

〈N(t)〉 = 0, 〈N(t), N(0)〉 = 2Dδ(t), (3)

where D denotes the noise intensity of the additive noise.
As is well known, the instantaneous frequency of the LFM sig-

nal rises with the increase in time. This means that the frequency
variation may make the classic SR hard to induce the LFM signal.
Thus, it is necessary to introduce the general scale transformation
method into SR. For this purpose, we make

τ = βt, z(τ ) = x(t), (4)

where β is the time scale. Substituting Eq. (4) into Eq. (1), we can
obtain

dz(τ )

dτ
=

a

β
z(τ ) −

b

β
z3(τ ) +

1

β
s

(

τ

β

)

+
1

β
N

(

τ

β

)

. (5)

Now, by multiplying the right-hand side of Eq. (5) by β , the
equation becomes

dz(τ )

dτ
= az(τ ) − bz3(τ ) + s

(

τ

β

)

+ N

(

τ

β

)

. (6)

From Eq. (6), we can see that it meets the precondition of small
parameter SR. In other words, according to the equation, SR is able
to occur. Letting

t =
τ

β
, x(t) = z(τ ), (7)

then we obtain

dx(t)

dt
= βax − βbx3 + βs(t) + βN(t). (8)

As is well known, scale transformation will not change the
dynamic properties of the system. Therefore, this means that by
using Eq. (8), we can induce SR with a high-frequency signal.
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Fractional Fourier transform (FRFT) is a common method
used to process the LFM signal. FRFT of x(t) is defined as

Xp(u) = Fp[x(t)] =

∫ ∞

−∞

x(t)Kα(t, u)dt, (9)

where p is the order of FRFT, Fp[·] is the operator, and Kα(t, u) is the
kernel of the FRFT described as

Kα(t, u) =











√

1−jcotα

2π
(expj t2+u2

2
cotα − tuα), α 6= nπ ,

δ(t − u), α = 2nπ ,
δ(t + u), α = (2n ± 1)π ,

(10)

in which j is the imaginary unit (j2 = −1) and α is the rotation angle
of axis (α = pπ /2). As a result, through FRFT, the signal x(t) can
be transformed into X(u) in the fractional Fourier domain. During
this process, if α is selected properly, then the LFM signal can be
transformed into an impulse. This means that FRFT brings about the
concentration of the energy of the LFM signal. However, the noise
energy cannot be focused in the fractional Fourier domain.

SNR is a kind of index that describes the relationship between
the signal energy at a specific frequency and the noise energy. In
many studies on SR, SNR is the most common index used to char-
acterize the signal energy at a fixed frequency. However, since the
instantaneous frequency of the LFM signal keeps changing with
time, there is a frequency band with a certain bandwidth, which
describes the signal energy in the frequency domain. Due to the
effect of noise, it is difficult to continue to use the SNR to accurately
describe the relationship between the signal energy at a frequency
band and the noise energy. Therefore, in this paper, we define a new
index, which we call fractional signal-to-noise ratio (FSNR), that we
define as

FSNR = 10 log
|X(up)|

2

(
N
∑

u=1

|X(u)|2) − |X(up)|
2

. (11)

Herein, |X(up)|
2 is the LFM signal energy and (

N
∑

u=1

|X(u)|2)

− |X(up)|
2 is the noise energy in optimal fractional domain.

B. Numerical simulations

Here, we present several groups of raw signals as shown in
Fig. 1. From top to bottom, the amplitudes of the LFM signals are
0.1, 0.2, and 0.3, and they have been submerged by noise with a 0.2
noise intensity. To verify the effectiveness of FSNR in SR, it will be
used to process these signals.

At first, to calculate FSNR, raw signals need to be processed
through FRFT. The results after processing are shown in Fig. 2. In
the first subplot, the amplitude spectra for different orders are plot-
ted. It can be seen that there is a distinct peak appearing in the (p, u)
plane. Corresponding to the peak, the amplitude spectrum at opti-
mal order is depicted in the second subplot. Apparently, the LFM
signal contained in the raw signal is turned into an impulse in u
domain but the noise is not. Therefore, according to the definition
of the index, the value of FSNR for the signal can be easily calculated,
which is 18.05.

FIG. 1. Several groups of noisy raw signals with a 0.2 noise intensity. The simu-
lation parameters are γ = 1, f 0 = 1, and ϕ = 0. (a) A= 0.1, (b) A= 0.2, and (c)
A= 0.3.

Then, based on this index, it can be used to measure the SR
output so that several parameters are able to be determined, such
as the noise intensity or the system parameters. In the SR theory,
adding some noise is able to make the system to have a better output.
Thus, by letting the noise intensity to be an independent variable,
we can compute the FSNR vs the noise intensity for three different
raw signals, as shown in Fig. 3. Initially, the value of the FSNR is
comparatively low when there is no noise added into the system.
At this moment, the SR is not enough to be induced only by the
noise within the raw signal. Next, as the noise intensity increases,
each curve rises and then peaks at a certain point. Finally, the curve
falls slowly when more and more noise is input into the system. The
point is often called resonance point where SR tends to occur.

Figure 4 illustrates the phenomena at resonance points, show-
ing the system outputs and the fitted signals. Compared with the
signals in Fig. 1, the LFM signal hidden by noise can be recognized.
In addition, the hidden LFM signal has been enhanced, which means
the noise energy almost has been transferred into the LFM signal and
obviously SR is able to happen. It indicates that the SR almost occurs
when the FSNR reaches a local maximum.

Furthermore, taking the FRFT of the system outputs and rotat-
ing the outputs at an optimal angle, Fig. 5 is obtained. It can be seen
that there are only signal frequency components left in the fractional
Fourier domain, but the noise is almost removed. This also indicates
that the FSNR affords to measure and characterize the SR output.

III. THE ADAPTIVE SR BASED ON OPTIMIZATION

ALGORITHM

In this section, we first briefly introduce the specific theory and
the implementation process on CMGA. Then, with the help of the
algorithm, an adaptive SR can be achieved in order to obtain the
recovery of the LFM signal quickly.
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FIG. 2. The amplitude spectra of the raw signal in the fractional Fourier domain
for different orders and at an optimal order. The simulation parameters are
A= 0.3 and α = 1.57.

A. Introduction of CMGA

The CMGA is a kind of improved genetic algorithm based on
the cloud model theory. The cloud model is a conversion model
that can implement a transformation between qualitative concepts
and quantitative values. Among the cloud models, the normal cloud
model is the most commonly used that follows a normal distribu-
tion. It is defined as a universe set U that includes random numbers
with a stable tendency. U is related to a qualitative concept C. The
overall property of C can be described as C (Ex, En, He) by three
numerical characters, that is, expected value Ex, entropy En, and
hyper-entropy He. The certainty degree of x on C is represented as

µ(x) = exp

(

−
(x − Ex)2

2En′2

)

, (12)

where x follows the normal distribution with mean value Ex and
variance En′2. En′ also follows the normal distribution, and its mean
value and variance are En and He2, respectively. The specific digital
characteristics of the cloud is shown in Fig. 6.

FIG. 3. Fractional signal-to-noise vs the noise intensity for three different raw
signals. The simulation parameters are β = 80, a= 1, and b= 1.

The normal cloud generator is the generator that produces a
normal cloud model. In the algorithm, the normal cloud generator
is applied in genetic crossover operation and mutation operation.
Owing to the properties of randomness and stable tendency of the
cloud model, the CMGA overcomes the drawbacks of the tradi-
tional genetic algorithm, and it has a good global search ability and
fast convergence speed. The main procedures of the CMGA are

FIG. 4. The optimal system outputs after SR. The solid lines represent the
outputs, and the dashed lines represent the signals after fitting. (a) A= 0.1,
(b) A= 0.2, and (c) A= 0.3. The simulation parameters are β = 80, a= 1,
and b= 1.
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FIG. 5. The fractional Fourier spectra for the system outputs. The simulation
parameters are β = 80, a= 1, and b= 1. (a) A= 0.1, (b) A= 0.2, and (c)
A= 0.3.

described in detail as follows. Figure 7 illustrates the flow chart of
the CMGA.

1. Genetic encoding

A chromosome represents an individual, which carries a poten-
tial solution to an optimization problem. Thus, for the d-variable
optimization problem, each chromosome is encoded into a string in
the process of genetic encoding.

FIG. 6. The digital characteristics of the cloud model. The simulation parameters
are En= 2, Ex= 20, and He= 0.15.

FIG. 7. The flow chart of the CMGA.

2. Selection operation

As the first step of reproduction of the population, the selection
operation is a process that stochastically selects a part of individuals
from the population in order to directly enter the next population.
Here, the roulette wheel method, also known as fitness propor-
tionate selection, is chosen as the individual selection method. The
method being able to achieve selection is mainly based on the fit-
ness value of an individual. The individual with a higher fitness will
be more likely to be copied into the next population. Therefore, a
selection operation can avoid the loss of the best individual during
evolutions to some extent.

3. Crossover operation

A cloud crossover operator simulates a process that offspring
individuals inherit parts of parents based on the theory of a cloud
model. The crossover operator is realized by the X conditional cloud
generator algorithm, which is described as follows.

Step 1: Calculate the average of the fitness of parent individuals,
denoted as Ex = (fa + fb)/2.

Step 2: Generate a random number En′ and let En be the
mean value and He2 be the variance. En = m1(Fmax − Fmin) and
He = n1En, where m1 and n1 are control coefficients. Fmax and Fmin

are the maximum and minimum of the fitness values in the parent
population, respectively.
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FIG. 8. Several tested raw signals with different unknown LFM signals: (a) signal
1, (b) signal 2, and (c) signal 3.

Step 3: Calculate cloud crossover operator as

pcr =

{

t1e
−(f−Ex)2

2En ′ , f ≥ F̄,
t2, f < F̄,

(13)

where F̄ is the average of the fitness of the parent population,
f = max(fa, fb), and t1 and t2 are constants.

Therefore, according to the algorithm, the cloud generator will
provide the crossover probability of the parents chosen randomly,
pcr, and a random number RAND. When pcr > RAND, the crossover
operation is performed by randomly choosing a site along the length
of the chromosome. The two offspring individuals are produced by
employing an X-condition cloud generation algorithm.

4. Mutation operation

The mutation operator simulates a process of altering one or
more gene values in a chromosome from its initial state, analogous
to biological mutation. It ensures genetic diversity from one genera-
tion to the next so that it can make the algorithm to jump out of the
local optimum. The mutation operation based on a cloud model is
specifically as follows.

Step 1: Suppose the average of the fitness of a single parent
individual is Ex, denoted as Ex = fa.

Step 2: Generate a random number En′ and let En be the
expectation value and He2 be the variance. En = m2(Fmax − Fmin)

and He = n2En, where m2 and n2 are control coefficients.
Step 3: Calculate the cloud mutation operator as

pmt =

{

s1e
−(f−Ex)2

2En ′ , f ≥ F̄,
s2, f < F̄,

(14)

where s1 and s2 are constants as well.

FIG. 9. The convergence curve of the CMGA.

The algorithm also performs X-condition cloud generator to
generate offspring individual. Similar to crossover operation, the
individual is updated by comparing pmt with RAND.

B. Numerical optimization experiment

Based on the excellent performance of a cloud based genetic
algorithm, we use it to optimize the parameters in order to achieve
an adaptive SR. First, three different unknown LFM signals with
some noise are given in Fig. 8.

Then, the time scale and system parameters are optimized by
using the algorithm and here d = 3. Note that the loop condition
here is that iteration time reaches 50. Figure 9 shows that FSNR
almost reaches the optimal value (nearly 50) when iteration is <10.
This illustrates the better convergence and higher retrieval efficiency
of the algorithm.

Through optimization, the system parameters that achieve an
adaptive SR are obtained. Table I lists the results after optimization
and the related parameters of the LFM signals in detail. According to
the obtained values of parameters, SR outputs and the fitted curves
are plotted in Fig. 10. Apparently, the hidden LFM signal can be
recognized. In addition, the amplitude of the output is more than
the one of the pure LFM signal, which means the LFM signal hid-
den in the raw signal is enhanced. To sum up, with the help of the

TABLE I. Optimization results and some related parameters settings.

a b D β A γ f0 φ

Signal 1 0.8229 1.2678 0.2 75.1200 0.3 1 1 0
Signal 2 0.0694 0.8850 0.2 19.9897 0.3 4 1 0
Signal 3 0.0116 1.1089 0.2 73.3166 0.3 −1 5 0
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FIG. 10. Adaptive SR outputs through CMGA. The solid lines represent the out-
puts, and the dashed lines represent the signals after fitting. (a) Signal 1, (b) signal
2, and (c) signal 3.

CMGA, an adaptive SR can be easily achieved in order to recover the
unknown LFM signal from the raw signal.

IV. CONCLUSION

This study proposes a new index, FSNR, so that the hidden
LFM signal in the noise background can be characterized. In the pro-
cess of calculating the index, the FRFT needs to be used so that the
raw signal can be transformed into the optimal fractional domain.
Then, in the optimal fractional domain, the value of the index is cal-
culated. The numerical results indicate that the LFM signal in the
raw signal can be effectively measured. In other words, it describes
the energy of the hidden LFM signal well, especially when the signal
in the noise is unknown.

Since the instantaneous frequency of the LFM signal varies with
time, the general scale transformation is adopted so that the appro-
priate system parameters can be obtained. Then guided by the index,
SR can occur and is able to recover the unknown LFM signal from
the raw signal. By adjusting the appropriate parameters, not only
the submerged LFM signal can be identified but also the signal can
be enhanced because the noise energy is transferred to the signal.
In addition, in order to improve the SR performance in signal pro-
cessing, an adaptive SR is implemented based on the CMGA so that
the better value of the time scale and the system parameters can be
quickly and easily searched.

To sum up, the results of this study allow not only to achieve
the detection of the unknown LFM signal but also to remove the
noise interference and quickly achieve the waveform recovery of the
unknown LFM signal.
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