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The phenomenon of delay-induced resonance implies that in a nonlinear system a time-delay
term may be used as an effective enhancer of the oscillations caused by an external forcing
maintaining the same frequency. This is possible for the parameters for which the time-delay
induces sustained oscillations. Here, we study this type of resonance in the overdamped and
underdamped time-delayed Duffing oscillators, and we explore some new features. One of them
is the conjugate phenomenon: the oscillations caused by the time-delay may be enhanced by
means of the forcing without modifying their frequency. The resonance takes place when the
frequency of the oscillations induced by the time-delay matches the ones caused by the forcing
and vice versa. This is an interesting result as the nature of both perturbations is different. Even
for the parameters for which the time-delay does not induce sustained oscillations, we show that
a resonance may appear following a different mechanism.
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1. Introduction

The phenomenon of resonance has always been
a topic of interest in science and engineering
[Rajasekar & Sanjuan, 2016] because it enables the
enhancement of the output signal of an oscillator by
means of different types of perturbations. We could
classify a resonance for nonlinear systems depend-
ing on the nature of the perturbation as: stochas-
tic resonance (SR) [Gammaitoni et al., 1998], when
the perturbation is a noise signal; vibrational reso-
nance (VR) [Landa & McClintock, 2000], when it is
a high-frequency periodic forcing; and chaotic res-
onance (CR) [Zambrano et al., 2007], when it is a
chaotic signal.

Vibrational resonance and stochastic resonance
have also been studied in systems with time-delay
[Jeevarathinam et al., 2011; Kim et al., 1999; Yang &
Liu, 2010]. These kind of systems have gained

popularity in the scientific community as the time-
delay accounts for the finite propagation time, and
affects a wide variety of physical, engineering and
biological processes. A relevant characteristic of a
time-delayed system is that its future evolution
depends not only on its present state, but also on
a previous state of its history, that we denote with
the time-delay τ . This implies that initial condi-
tions for t = 0 are no longer enough to define a
particular solution. On the contrary, a history func-
tion, i.e. a set of initial conditions in the continuous
time interval [−τ, 0], is necessary. This is the reason
why these systems are said to evolve in an infinite-
dimensional phase space [Doyne Farmer, 1982].
Among the branches of science where a time-delay is
present, we may consider neural networks since the
speed of information transfer in the axons and den-
drites is finite [Popovych et al., 2011], population
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dynamics due to the gestation and maturation times
[Kuang, 1993; Liu & Zhang, 2016], meteorology due
to the transport times of mass or energy from one
location of the globe to another [Keane et al., 2017],
laser arrays because of the speed of light [Soriano
et al., 2013], and car following models for traffic flow
simulation [Orosz et al., 2010]. It also plays a vital
role in electronics since the speed of modern data
processing does not allow to neglect finite propaga-
tion times [Just et al., 2010].

Concerning the study of resonance in time-
delayed systems, there is some preliminary literature
that analyzes the possibility to enhance the system’s
response solely by means of a time-delay, exclud-
ing perturbations such as a noise, chaotic signals or
periodic forcings. We mention here some of these
cases. The question of the need of a high-frequency
forcing when a time-delay is present was already
posed by Lv et al. [2015]. The effect of the time-delay
in the periodically-driven damped Duffing oscillator
was analyzed in [Ravichandran et al., 2012] using a
perturbation theory. A new resonance for the time-
delayed overdamped Duffing oscillator in the pres-
ence of a Bogdanov–Takens bifurcation leading to
the phenomenon called Bogdanov–Takens resonance
was analyzed in [Coccolo et al., 2018].

Furthermore, a time-delay together with a non-
linear term is presented in [Yang et al., 2015] as
an effective mechanism to enhance a weak input
periodic forcing without the aid of a high-frequency
forcing or a noise signal. This is possible because
the time-delay induces oscillations in the system
of frequency ωn(τ) for certain values of τ . When
this frequency equals the frequency of the oscillator,
a phenomenon named as delay-induced resonance
arises.

However, some features concerning this phe-
nomenon remain open: the effect of the amplitude of
the time-delay term, the dynamics when the time-
delay does not induce oscillations or the possibil-
ity to induce a resonance by means of the forcing
in the presence of the time-delay, among others.
Indeed, this phenomenon was only studied for a
time-delayed overdamped oscillator with a cubic
term but not for other systems.

In this paper, we aim to broaden the current
knowledge on the delay-induced resonance through
the study of the periodically-driven Duffing oscil-
lator with a time-delay. In particular, we analyze
the overdamped and underdamped cases and we
will cover the topics previously mentioned. For the

overdamped oscillator, we focus on the parameter
space and we carry out analytically and numer-
ically a bifurcation analysis of the unforced sys-
tem in order to determine the parameter values for
which the time-delay induces oscillations. For these
parameter values, we analyze not only the effect of
τ (as in [Yang et al., 2015]), but also the effect of
the amplitude of the time-delay term, γ. We show
that a time-delay term with parameters (γ, τ) may
enhance the oscillations produced by an external
forcing without the aid of any other kind of pertur-
bation. Furthermore, we study the conjugate phe-
nomenon: the possibility of enhancing the oscilla-
tions induced by the time-delay by means of the
periodic forcing. Secondly, we show that the signal
enhancement is possible even for the parameters for
which the time-delay does not induce oscillations.
For the underdamped oscillator, a similar analysis
is carried out and the phenomenon of delay-induced
resonance also arises displaying some differences.

This paper is organized as follows: Section 2
describes the dynamics of the overdamped system
and it is divided into three subsections covering
the bifurcation analysis, delay-induced resonance
for the parameters for which the time-delay induces
sustained oscillations and for the parameters for
which it induces decaying oscillations. In both cases,
the effect of the time-delay and the forcing are con-
sidered. Section 3 describes the underdamped case
and it is divided into two subsections covering the
numerical bifurcation analysis and the study of res-
onance for a specific range of parameter values.
Again, the effect of the time-delay and the forcing
are considered separately. Discussions and conclu-
sions are presented in Sec. 4.

2. Overdamped and Time-Delayed
Duffing Oscillator

The overdamped oscillator is the limit for which an
oscillator mẍ + bẋ = F (x) with a large frictional
force compared to its inertial term (bẋ � mẍ) can
be reduced to bẋ = F (x) [Strogatz, 1994]. In our
case, the overdamped system with time-delay and
a forcing reads as follows

ẋ − x + x3 − γx(t − τ) = g cos Ωt, (1)

where τ is the time-delay, γ is the amplitude of
the time-delay term and g cos Ωt is a weak forc-
ing that produces the oscillations that we aim to
enhance.
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2.1. Bifurcation analysis

We start with the study of the dynamics of the
unforced system

ẋ − x + x3 − γx(t − τ) = 0, (2)

which is used to model the widely known atmo-
spheric phenomenon of El Nin̄o Southern Oscilla-
tion (ENSO) where the variable x represents the
sea surface temperature anomaly [Suarez & Schopf,
1988].

Without the time-delay term, γx(t − τ),
Eq. (2) would reduce to a first order ODE with two
symmetric stable fixed points x = ±1 in addition
to an unstable fixed point x = 0. This dynamical
behavior corresponds to the flow on a line which
implies that the system is not able to oscillate under
any circumstances. However, the time-delay makes
the system infinite-dimensional allowing the pos-
sibility of oscillations for certain parameter values
(γ, τ). In other words, the origin of the oscillatory
dynamics of Eq. (2) is the time-delay term.

A linear stability analysis is performed around
the origin, x(t) = 0, in order to determine the
parameter region of stability (γ, τ) for this solution.
Linearizing Eq. (2) near x(t) = 0 gives us

ẋ = x(t) + γx(t − τ). (3)

Then, we calculate the characteristic equation
which is found setting x(t) = Qeλt, where λ is a
complex parameter

λ = 1 + γe−λτ . (4)

If Re(λ) < 0, the fixed point is stable, that
is, a trajectory that starts at the origin would
remain there and a trajectory that starts elsewhere
would decay to the origin after a transient oscilla-
tory regime. When the real part of the eigenvalue
changes from being negative to being positive, the
fixed point loses stability and the system is said to
cross a Hopf bifurcation. This means that the ori-
gin is no longer stable and a trajectory starting near
the origin would move away in the form of an out-
ward spiral in phase space. As we can appreciate in
Eq. (4), the values of γ and τ affect the eigenvalue,
λ, thus they affect the stability of the fixed point.
To find the condition for the Hopf bifurcation, we
set λ = iω which accounts for the change of sign
in Re(λ)

±iω = 1 + γe±iωτ = 1 + γ(cos ωτ ± i sin ωτ).
(5)

Separating the real and imaginary parts, we
have

1 = −γ cos ωτ, (6a)

ω = −γ sin ωτ. (6b)

After some algebra we finally get the Hopf
bifurcation curve given by

τ =
arccos

(−1
γ

)
√

γ2 − 1
, (7)

which accounts for the values of (γ, τ) for which the
origin loses stability.

Another bifurcation takes place when λ = 0.
This substitution in Eq. (4) leads to γ = −1,
which defines a pitchfork bifurcation as the system
presents a single zero root. At the point (γ, τ) =
(−1, 1), the Hopf and pitchfork bifurcation curves
cross, leading to a Bogdanov–Takens bifurcation as
Eq. (4) presents a double zero root. A detailed anal-
ysis of the system’s behavior when γ > −1 can be
found in [Redmond et al., 2002].

Both the Hopf and the pitchfork bifurcations
are depicted in Fig. 1. The parameter space is
divided in different regions depending on the sys-
tem’s behavior near the origin. The vertical line
corresponding to the pitchfork bifurcation outlines
the system’s transition from one fixed point on the
left of the bifurcation to three fixed points in the
region to the right. For a fixed γ < −1, we call

Fig. 1. Stability diagram in the parameter space (γ, τ ) for
the origin x(t) = 0. The vertical line corresponds to the pitch-
fork bifurcation which marks a change in the number of fixed
points, three to the right of the bifurcation line and one to
the left. The curve corresponds to the Hopf bifurcation that
implies a change in the stability of the fixed point. For val-
ues of (γ, τ ) below the Hopf bifurcation, trajectories present
decaying oscillations. For values above the Hopf bifurcation,
trajectories near the origin diverge in the form of an outward
spiral. The points on the curve correspond to numerically
calculated points of the Hopf bifurcation curve.
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τc the corresponding time-delay crossing the Hopf
bifurcation curve. A trajectory starting nearby the
origin x(t) = 0 would draw an inward spiral for a
value of τ < τc and an outward spiral for τ > τc.

Numerically calculated points of the Hopf bifur-
cation curve appear too. These points, which corre-
spond to the stars along the Hopf bifurcation curve
in Fig. 1, have been calculated by fixing γ and
selecting the τ for which the oscillations start in
phase space. It can be seen that they match the the-
oretically calculated values by Eq. (7). The history
function used was u0 = 0.01 so that the trajectory
starts nearby the origin x(t) = 0. Every numerical
integration in this paper was performed using the
method of steps to reduce our DDE to a sequence
of ODEs that are solved by a fixed-step Runge–
Kutta algorithm (Bogacki–Shampine 3(2) method)
[Bogacki & Shampine, 1989].

Linear stability analysis only provides informa-
tion about the system’s behavior near the origin.
When the effect of the nonlinear term x3 is taken
into account, it can be observed that for τ > τc

a trajectory near the origin diverges as an outward
spiral as predicted from linear stability analysis, and
also that a limit cycle arises when it is sufficiently
far from the origin. This means that values of (γ, τ)
above the Hopf bifurcation generate sustained oscil-
lations for the unforced system [Eq. (2)].

Here, we study the dynamics above (τ > τc)
and below (τ < τc) the Hopf bifurcation. For that
purpose, we fixed γ = −3 and through Eq. (7) we
get the critical value τc = 0.435 from which our
nonlinear system [Eq. (2)] oscillates. The frequency
of these oscillations, which we call the natural fre-
quency, was numerically calculated for different val-
ues of τ > 0.435 and also for some other values
of γ (see Fig. 2). If the derivative of our variable
depends on a state far away in time, that is, τ suf-
ficiently large, the frequency induced decays show
the same behavior independently of the amplitude
of the time-delay term.

Numerically, the frequency is calculated by
using the Fourier transform (Fast Fourier Trans-
form algorithm from MatLab that is based on a
library called FFTW [Frigo & Johnson, 2005]) of
the stationary time series for each τ . Figure 3 shows
the spectrum for γ = −3, where the first peak cor-
responds to what we have called the natural fre-
quency. We refer to its amplitude as An and ωhi

with i = 1, 2, 3, . . . to the frequency of its harmon-
ics, as shown in Fig. 3.

0 2 4 6 8 10 12
0

1

2

3

4

5

n

=-1.1
=-3
=-5

Fig. 2. Natural frequency, ωn, induced by the time-delay for
τ > τc. The frequency reaches a maximum for small values
of τ while for larger values the frequency decays showing the
same behavior independently of γ.

2.2. Delay-induced resonance
for τ > τc

In this subsection, we study the resonance for the
system described by Eq. (1) for values of τ > τc.
For these values, the time-delay induces oscillations
of frequency ωn together with its harmonics. This
implies that the response of the system contains a
set of frequency components

x(t) =
n∑

i=1

Q(ωi) cos(ωit + φi), (8)

where ωi are the frequencies contained in the
response such as ωn in Fig. 3 and φi are arbitrary
phases.

If we are interested in the amplitude corre-
sponding to a particular frequency, we may calcu-
late the Q factor which is mathematically defined

1 3 5 7 9
Frequency (

i
)

0

0.5

1

1.5

2

A
n

A

n

h3
h2

h1

h4

Fig. 3. Frequency spectrum of the oscillations induced by the
time-delay. The time-delay term with the parameters (γ =
−3, τ = 2.73) induces multiple frequencies ωi in Eq. (2). The
main peak appears for a frequency that we refer to as ωn

and we refer to its amplitude as An. Also, the frequencies
ωhi with i = 1, 2, 3, . . . correspond to its harmonics.
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as

Q(ωi) =
√

Q2
sin(ωi) + Q2

cos(ωi), (9)

where Qsin(ωi) and Qcos(ωi) are

Qsin(ωi) =
2

mT

∫ mT

0
x(t) sin(ωit)dt,

Qcos(ωi) =
2

mT

∫ mT

0
x(t) cos(ωit)dt.

(10)

Therefore, the magnitude Q(Ω) is a measure of
the amplitude of the solution at the frequency Ω and
Q(ωn) is a measure of the amplitude of the solution
at ωn. Numerically, the Q factor is calculated by
selecting the amplitude of the peak in the frequency
spectrum that corresponds to the frequency we are
interested in.

First, we explore the effect of the time-delay
in the magnitude Q(Ω) as we aim to enhance the
oscillations of the forcing. Secondly, we explore the
effect of the forcing in the magnitude Q(ωn) as we
aim to enhance the oscillations induced by the time-
delay.

2.2.1. Effect of the time-delay

To explore the effect of the time-delay in Eq. (1),
we initially consider our system as

ẋ − x + x3 = 0.1 cos t. (11)

The forcing leads to small sustained oscillations
of frequency Ω around one of the fixed points x =
±1 depending on the initial condition (see Fig. 4).

0 50 100 150
t

-2

-1

0

1

2

3

x(
t)

With delay
Without delay

Fig. 4. Time series with (large amplitude oscillations) and
without (small amplitude oscillations) the time-delay for the
forced and overdamped oscillator : ẋ − x + x3 = 0.1 cos t.
When a time-delay term such as −3x(t− 2.73) that induces
oscillations of ωn = Ω is considered, the oscillations produced
by the forcing are enhanced maintaining the same frequency.

2.73 9 15.3 21.6 27.9
0

0.5

1

1.5

2

2.5

Q
(

)

Fig. 5. Resonance in the Q factor for the value of τ for
which ωn = Ω. When a feedback time-delay term such as
3x(t − τ ) is added to ẋ − x + x3 = 0.1 cos t, it can be
seen that there is an optimum value of τ , that is τ = 2.73,
for which the amplitude at the forcing frequency is greatly
enhanced. This value corresponds to the τ for which the time-
delay induces oscillations of ωn = Ω = 1. Other local maxima
appear for the values of τ for which ωhi = Ω.

There are many ways to enhance the system’s
response, for instance, by adding a second forcing
with frequency Ω′ � Ω which is a method based on
the vibrational resonance phenomenon. However,
we approach the problem using the properties of
the time-delay, adding a term like −γx(t − τ).

In the absence of forcing, the time-delay induces
oscillations with a frequency ωn, which depends on
the parameters (γ, τ) as shown in Fig. 2. Thus, we
fixed γ and studied the resonance appearance when
τ is varied. However fixing τ and varying γ is also
possible in the appearance of the resonance, which
is discussed at the end of this subsection.

In Fig. 5, the resonant behavior is displayed
for a time-delay with a fixed amplitude γ = −3
and a first peak appears for τ = 2.73. For this
value, the output signal is enhanced as the condi-
tion Q(Ω) > g holds [Yang et al., 2015]. Also, it is
important to remark that these values (γ = −3, τ =
2.73) correspond to a time-delay term that induces
oscillations in the unforced system with a natu-
ral frequency ωn = Ω. This means that when the
time-delay induces oscillations of frequency equal to
the forcing frequency, then the Q factor is enhanced.
Figure 4 shows how the system oscillates around
the origin with a larger amplitude when the time-
delay is considered. Moreover, the time-delayed sys-
tem maintains the same frequency Ω, because the
Q factor at the frequency Ω for τ = 2.73 has a max-
imum. For other parameter values of (γ, τ), oscilla-
tions may be enhanced but the frequency would be
changed.

2030007-5

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

B
IR

M
IN

G
H

A
M

 o
n 

04
/0

9/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 20, 2020 17:1 WSPC/S0218-1274 2030007

J. Cantisán et al.

Furthermore, a delay-induced resonance does
not only occur for ωn = Ω, instead other local max-
ima are reached periodically, but their amplitudes
decrease. In Fig. 5 some of these secondary peaks
can be appreciated, the first of them at τ = 9. These
peaks appear because the time-delay does not only
induce the natural frequency, but also its harmon-
ics as shown in Fig. 3 for τ = 3. For τ = 9, its
first harmonic (ωh1) corresponds to Ω leading to
this secondary peak of resonance. For other values
of τ , the frequency of one of the harmonics may
equal the frequency of the forcing leading to suc-
cessive weaker peaks which appear with a period of
2π/Ω. In Table 1, we include some of these values of
τ and the frequency component that each resonance
peak induces.

For a low-frequency forcing (Ω � 1), the value
of the time-delay τ for which the resonance appears
would be independent of γ, since the curves in Fig. 2
converge at small values of ωn (ωn � 1).

In Fig. 6, the Q factor in function of γ is shown
when τ is fixed to 2.73. We recall that the condi-
tion to stay on the left of the pitchfork bifurcation
(Fig. 1) is γ < −1, thus the sweep in γ is restricted.
As before, the resonance appears for the γ that
induces oscillations of frequency ωn = Ω, that is
γ = −3. Again, the signal is enhanced at this point
since Q(Ω) > g. The width of the resonance peak
is larger in this case as for the fixed τ the curves in
Fig. 2 for different γ are very close. This means that
a substantial change in γ produces a slight change
in ωn, thus there is an interval of values around
γ = −3 that causes the resonance.

A restriction for this type of resonance to
appear is that the forcing amplitude has to be
small compared to the oscillation induced by the

Table 1. Values of the time-delay τ that induce a
frequency component equal to the forcing frequency.
The values of τ appear with periodicity 2π/Ω and
they correspond to the resonance peaks in Fig. 5. The
first value τ = 2.73 induces oscillations of natural
frequency equal to Ω, while for the following values
of τ it is one of their harmonics that appears at a
frequency Ω.

Value of τ Frequency Component

τ = 2.73 ωn = Ω

τ = 9 ωh1 = Ω

τ = 15.3 ωh2 = Ω

τ = 21.6 ωh3 = Ω

-6 -5 -4 -3 -2 -1
0

0.5

1

1.5

2

2.5

Q
(

)

Fig. 6. Resonance in the Q factor for the value of γ for
which ωn = Ω. When a feedback time-delay term of the form
−γx(t − 2.73) is added to ẋ − x + x3 = 0.1 cos t, we observe
that there is an optimum value of γ, that is γ = −3, for which
the amplitude at the forcing frequency is greatly enhanced.
As it happened with τ , this value corresponds to the γ for
which the time-delay induces oscillations of ωn = Ω.

time-delay, otherwise the effect of the time-delay
cannot be noticed.

All in all, when the time-delay induces oscil-
lations of the same forcing frequency, the response
amplitude at this frequency reaches a maximum.
This result is interesting as we shall remember that
for VR the frequencies of both forcings were not
equal, one had to be greater than the other.

2.2.2. Effect of the forcing

In this subsection, we aim to enhance the oscilla-
tions caused by the time-delay instead of the ones
caused by the forcing. The unforced system with
time-delay reads

ẋ − x + x3 + 3x(t − 2.73) = 0, (12)

which oscillates around zero with frequency ωn (see
Fig. 7). Now, a periodic perturbation, g cos Ωt, is
added in order to enhance the response to the fre-
quency ωn provoked by the time-delay. The criterion
to affirm that the signal caused by the time-delay
has been enhanced is that Q(ωn) > An, where An

is the amplitude of the unforced system at this fre-
quency, i.e. the first peak in the frequency spectrum
(see Fig. 3).

Figure 8 shows that a resonance peak appears
in the Q factor when Ω = ωn that fulfills the crite-
rion mentioned above. As for (γ = −3, τ = 2.73),
the natural frequency is ωn = 1, the resonance peak
appears for Ω = 1. This peak grows monotonically
with the forcing amplitude g. In Fig. 7, we show
how the oscillations are enhanced when the forcing
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0 50 100 150 200
t

-4

-2

0

2

4

x(
t)

With forcing
Without forcing

Fig. 7. Time series with (large amplitude oscillations) and
without (small amplitude oscillations) the forcing for the
time-delayed and overdamped oscillator : ẋ− x + x3 + 3x(t−
2.73) = 0. The system without the forcing oscillates due to
the time-delay term with frequency ωn. When a forcing such
as 30 cos ωnt is added, the amplitude is enhanced maintaining
the same frequency.

with Ω = ωn is added, and how the frequency of the
oscillations remains the same. For values of Ω �= ωn

the system’s response would contain a different set
of frequencies, but the response is slightly larger
precisely when Ω = ωn because the effect of the
time-delay and the forcing are added (see Fig. 9).

A restriction for this type of resonance to
appear is that the forcing has to be of greater mag-
nitude than the oscillation caused by the time-delay
g > An, otherwise the effect of the forcing cannot
be noticed.

Comparing Figs. 5, 6 and 8 we realize that the
response of the system is similar in all cases as the
resonance takes place when both frequencies have

0 0.5 1 1.5 2
0

1

2

3

4

Q
(

n)

Fig. 8. Resonance in the Q factor for a forcing with fre-
quency Ω = ωn. When a forcing 30 cos Ωt is added to ẋ −
x + x3 + 3x(t − 2.73) = 0, it can be seen how the resonance
appears when the forcing frequency Ω equals the frequency of
the oscillations induced by the time-delay term which for this
case is ωn = 1. Some minor peaks that do not accomplish the
condition Q(ωn) > An are present for smaller values of Ω.

0 1 3 5 7 9
Frequency

0

1

2

3

4

A

=1
=0.5
=3

Fig. 9. Frequency spectrum for ẋ − x + x3 + 3x(t − 2.73) =
30 cosΩt with different values of Ω. The maximum peak
amplitude is achieved when Ω = ωn = 1 as the effects of
the time-delay and the forcing are added. For other values
of Ω, the system presents a different set of frequencies with
slightly smaller amplitudes.

the same value. The equivalence of the effect of
a change in Ω and a change in ωn, which is the
consequence of a change in (γ, τ), is not trivial as
the nature of both perturbations is different. This
fact allows us to talk about conjugate resonances
[Blekhman & Landa, 2004].

2.3. Delay-induced resonance
for τ < τc

Now, we explore the existence of a resonance in
the overdamped and time-delayed Duffing oscillator
[Eq. (1)] for τ < τc. In this region of τ , the dynam-
ics of the unforced system is restricted to decay-
ing oscillations around the origin (without the time-
delay, the decay towards the fixed point would be
monotonic). However, as we will see, when the time-
delay is present a resonance phenomenon appears.
Therefore, this makes us consider that in this case
the time-delay term plays the role of the enhanc-
ing perturbation like the noise in SR or the second
periodic forcing in VR. The periodic forcing plays
the role of the oscillation inducer.

First of all, we investigate the effect of the time-
delay on the amplitude of the system’s response by
changing τ for values smaller than τc, for a fixed γ.
Then, we investigate the effect of the frequency and
the amplitude of the forcing, for a given time-delay.

2.3.1. Effect of the time-delay

For the region τ < τc, the sweep in τ goes from 0
to τc, which can be calculated for a given γ with
Eq. (7). In Fig. 10(a) we analyze the peak to peak
amplitude response with τ for different values of g.
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Fig. 10. Peak to peak amplitude response in function of τ and Ω for ẋ − x + x3 − γx(t − τ ) = g cos Ωt. (a) The panel shows
that the resonance appears for a certain value of τ that increases with g leading to monotonic growth for g = 1. The parameter
values are γ = −1.1 and Ω = 1.69 and (b) the panel shows that the system also possesses resonant behavior with Ω, even for
very small values of the forcing. The parameter values are τ = 0.7008 and γ = −1.6.

We have to keep in mind that there is not a fre-
quency related with the effect of the time-delay on
the unforced system for this range of τ , thus it does
not make sense to calculate the Q factor and we use
the peak to peak amplitude.

For some values of g, a resonant behavior with
τ is found [Fig. 10(a)]. The value of the time-delay
τr for which the resonance appears, increases with
g leading to obtain, for g = 1, a monotonic growth
of the amplitude for the range of τ considered. A
similar restriction for the forcing amplitude was also
present in the range τ > τc. However, for smaller
values of g, the system displays resonant behavior as
the amplitude reaches a maximum for τr and then
falls again. As it can be seen, for τr the response
amplitude is greater than the forcing amplitude, g.

2.3.2. Effect of the forcing

Resonant behavior appears as well in Eq. (1) when
Ω is varied. This phenomenon has also been called
nonlinear resonance in a system with time-delay
as, for example, in [Ravichandran et al., 2012]
where it was explored for the underdamped Duffing
oscillator.

We have chosen the parameters (γ, τ) so that
we lay in the stability region near the Hopf bifur-
cation, however for values of the parameters fur-
ther from the Hopf bifurcation the resonance is less
intense but is still present. For τ = 0.7008, the value
of γ corresponding to the Hopf bifurcation curve

[Eq. (7)] is γ = −1.65. Having this in mind, we
choose τ = 0.7008 and γ = −1.6, which is slightly
under the Hopf bifurcation curve in the parameter
space.

In Fig. 10(b), we show how the amplitude of
the oscillations varies nonmonotonically with the
forcing frequency, i.e. exhibiting resonant behav-
ior. Also, Fig. 10(b) shows that even for very small
values of the forcing such as g = 0.05, we still
induce large amplitude oscillations in the system.
For higher values of the forcing amplitude, the
amplitude of the oscillations grows and the fre-
quency for which the resonance appears, Ωr, also
increases.

3. Underdamped and Time-Delayed
Duffing Oscillator

Once the delay-induced resonance has been ana-
lyzed for the overdamped oscillator, we continue
with the underdamped system for the parameters
considered in [Rajasekar & Sanjuan, 2016] which
make the system bistable

ẍ − x + 0.1x3 + γx(t − τ) = g cos Ωt. (13)

The dynamics of the system is richer in
this case due to the cooperation of the second
derivative, the time-delay and the external forc-
ing. The phenomenon of delay-induced resonance
appears as well, although it presents some different
characteristics.
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3.1. Bifurcation analysis

The equation for the unforced underdamped oscil-
lator reads

ẍ − x + 0.1x3 + γx(t − τ) = 0. (14)

As previously stated, the system is bistable for
the chosen parameters, what means that there are
three fixed points: one unstable at the origin and
two others (±x∗) corresponding to the bottom of
the wells. Unlike in the overdamped oscillator and
due to the second derivative, Eq. (14) without the
time-delay already presents sustained oscillations
that are confined to one of the wells. In the following
paragraphs, we explore the effect of the time-delay
on these oscillations.

For that purpose and because the dynamics is
more complex, we carry out a numerical bifurca-
tion analysis instead of an analytical one, where we
fix γ = −0.3. Then, we study how the dynamics
changes with τ by plotting the values of the peak to
peak amplitude of the time series. By doing so, we
can distinguish four different regions (see Fig. 11)
delimited by τ1, τ2 and τ3. The peak to peak ampli-
tude values for each τ were calculated by substract-
ing the minimum of the time series to the maximum.
This implies that these values are not necessarily
smooth with τ , specially in the regions where oscil-
lations are not periodic. For simulation purposes a
constant history function u0 = 1 was used. Also,
in Fig. 12 we have represented the time series and

0 1
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10
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II

Fig. 11. Maximum peak to peak amplitude in function of τ
in Eq. (14). The figure shows that four different regions can
be distinguished. In the first region (Region I: τ ∈ (0, τ1 =
1.76)), the time-delay acts as a damping term for the oscil-
lations caused by the second derivative. In the other regions,
the time-delay determines whether the oscillations are con-
fined in one well (Region II: τ ∈ [τ1 = 1.76, τ2 = 2.68)) or not
(Regions III: τ ∈ [τ2 = 2.68, τ3 = 3.6] and IV: τ > 3.6). The
peak to peak amplitude was calculated neglecting the initial
transients.

phase space for four different particular values of τ
corresponding to the four different regions.

In the following paragraphs, we detail the
dynamics of the system in each of the four regions
that appear in Fig. 11:

• Region I (τ ∈ (0, 1.76)): For the first region, oscil-
lations decay with time until the system reaches
one of the fixed points ±x∗. Thus, the steady-
state peak to peak amplitude in this region is
zero. The time-delay acts as a damping term in
the sense that it damps out the oscillations caused
by the second derivative [Berezansky et al., 2015].
The system falls into the positive well, that is
x ≈ 3.6 [see Figs. 12(a) and 12(b)], because the
history function is within the basin of attraction
for that well.

• Region II (τ ∈ [1.76, 2.68)): Here, the oscillations
are sustained and confined to one of the wells.
However, the behavior in this region is not homo-
geneous and we can distinguish two ranges. In the
first range, for values of τ ∈ [1.76, 2.5), the ampli-
tude of the oscillations is constant and trajecto-
ries are periodic [see Figs. 12(c) and 12(d)]. On
the other hand, for τ ∈ [2.5, 2.68), trajectories
are still confined, but oscillations are not peri-
odic. As already stated, in the latest interval, the
maximum peak to peak amplitude values are not
smooth with τ due to the aperiodicity.

• Region III (τ ∈ [2.68, 3.6]): In this region, we see
how the amplitude has jumped to a value bigger
than the width of the well, what it means is that
trajectories move from one well to another, while
without the time-delay, the motion was always
confined to one of them. This region is not smooth
due to the fact that oscillations are aperiodic. In
Figs. 12(e) and 12(f), we can see how oscillations
start in the positive well and after some time the
system jumps to the other well where it oscillates
aperiodically for some time before jumping to and
fro between wells again and again.

• Region IV (τ > 3.6): In the fourth region, tra-
jectories are no longer confined to either of the
wells and oscillations are periodic. This results in
a limit cycle in phase space [Fig. 12(h)] that spans
both wells.

To finish the analysis of the system’s response
to the time-delay, a bifurcation diagram was com-
puted (see Fig. 13). Two symmetric branches can
be seen corresponding to different history functions,
each one leading to a different attractor. Several
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Fig. 12. Time series (left column) and phase space (right column) trajectories for values of τ corresponding to the four
different regions. (a) and (b) For τ = 1.5 (Region I) oscillations decay with time towards one of the wells. (c) and (d) For τ = 2
(Region II) oscillations are sustained and bounded in one well. (e) and (f) For τ = 2.7 (Region III) we observe transitions
between wells. (g) and (h) Finally, for τ = 4 (Region IV) we are in the last region and the system spans both wells. In these
figures, a transient behavior is shown together with its equilibrium state.

steps were followed to construct the diagram: firstly,
it is necessary to extract a map from our contin-
uous system. For this purpose a return map was
constructed using the maxima and minima from

the time series. We discarded three quarters of
these points in order to avoid the transient behav-
ior and plot the last quarter. The same process was
repeated for different values of τ . For the upper
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Fig. 13. Bifurcation diagram for ẍ − x + 0.1x3 − 0.3x(t −
τ ) = 0. The ticks in the x-axis help us distinguish the
four different regions: Region I [0, τ1 = 1.76), Region II
[τ1 = 1.76, τ2 = 2.68), Region III [τ2 = 2.68, τ3 = 3.6] and
Region IV from τ3 = 3.6 on. Two attractors are plotted, the
upper one corresponding to the history function u0 = 1 and
the lower one corresponding to u0 = −1. Chaotic behavior
is found at the end of Region II and in Region III and for
Regions III and IV both attractors intermingle.

branch, the history for the first value of τ is a con-
stant function u0 = 1, so that, we start in the basin
of attraction of the positive well. While for the lower
branch we choose u0 = −1, and we start in the basin
of attraction of the other well. We used as history
functions for the rest of τ values the solution of the
previous iteration. This way, we make sure that we
stay in the same basin of attraction as the param-
eter is varied [Sprott, 2011]. Otherwise, the system
may jump to another attractor while varying the
parameter and we would obtain a meaningless bifur-
cation diagram.

The diagram shows the typical period-doubling
route to chaos. In Region II, we find two differ-
ent regimes both confined to one well: for τ ∈
[1.76, 2.5) the period of the system is two, while
for τ ∈ [2.5, 2.68), the period starts doubling reach-
ing a chaotic regime with some periodic windows.
Furthermore, in Region III, τ ∈ [τ2, τ3], the system
that was initially confined to one of the wells starts
jumping from one to another as the two chaotic
attractors intermingle. For values larger than τ3, i.e.
Region IV, periodicity appears again.

For the rest of the study of the resonance for
the underdamped oscillator, we restrain to values
of τ ∈ [1.76, 2.5), the periodic range of Region II.

We believe this region is more interesting as oscilla-
tions are confined to one well, unlike in Regions III
and IV, and with the cooperation of the time-delay
and the forcing, these oscillations can be enhanced
so that they span both wells. With respect to
Region I, the time-delay acts as a damping term
so that a delay-induced resonance is not possible
for that range of τ .

For the region of interest, τ ∈ [1.76, 2.5), we cal-
culate the frequency of the oscillations induced by
the time-delay, that is, the natural frequency (ωn).
As for the overdamped case, to find the ωn for each
τ , we perform a Fourier transform to get the fre-
quency spectrum and we name the frequency for
the main peak as ωn. In Fig. 14, we can see how ωn

decreases smoothly with τ .

3.2. Delay-induced resonance

Once the dynamics in the unforced system has been
characterized, we study the phenomenon of delay-
induced resonance in the following underdamped
oscillator with a periodic forcing

ẍ − x + 0.1x3 − 0.3x(t − τ) = g cos Ωt. (15)

We consider the effect of the time-delay and the
effect of the forcing separately in the following sub-
sections. In the first case, the forcing produces the
oscillations and we explore the possibility of using
the time-delay as an enhancing term for certain val-
ues of τ . In the second case, it is the time-delay
which induces the oscillations and we consider the
forcing as the enhancing term for certain values of
g and Ω.

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
1.2

1.4

1.6

1.8

n

Fig. 14. Natural frequency, ωn, induced by the time-delay
term in function τ for ẍ − x + 0.1x3 − 0.3x(t − τ ) = 0.
For the values of τ in the periodic range of Region II, the
frequency induced by the time-delay decays monotonically
with τ .
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3.2.1. Effect of the time-delay

First, we fix the parameters of the forcing to be
g = 0.01 and Ω = 1.571 in Eq. (15). Then, we con-
sider the feedback time-delay term, −0.3x(t− τ), in
order to enhance the system’s response to this small
forcing. As for the overdamped oscillator, we con-
sider the time-delay to act as the enhancing factor
if the condition Q(Ω) > g is accomplished for some
value of τ . Besides, we recall that the time-delay
induces oscillations of frequency ωn, which depends
on τ (Fig. 14).

Figure 15 shows the amplitude response at the
forcing frequency, Q(Ω), for values of τ correspond-
ing to the periodic range of Region II. The reso-
nance appears for an interval around τ = 2, which
corresponds to a time-delay that induces oscilla-
tions with a frequency ωn = Ω. For this value of
τ , the signal is enhanced as Q(Ω) > g.

We conclude that, as for the overdamped sys-
tem, the response for a driven oscillator can be
enhanced by means of a time-delay that induces
oscillations of the same frequency of the forcing.

3.2.2. Effect of the forcing

Now, we study the conjugate phenomenon of
the previous one. This time, we consider initially
Eq. (15) without the forcing, which for the consid-
ered range of τ , it oscillates with frequency ωn and
whose amplitude we are interested in enhancing. For
that purpose, the periodic perturbation, g cos Ωt, is
added and we study the effect of g and Ω on Q(ωn).
As for the overdamped oscillator, if Q(ωn) > An,

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

0.5

1

1.5

Q
(

)

Fig. 15. Resonance in the Q factor for the value of τ for
which ωn = Ω. The figure shows that adding a feedback time-
delay term −0.3x(t − τ ) to ẍ − x + 0.1x3 = 0.01 cos 1.571t
enhances the response amplitude at the forcing frequency for
a small interval around τ = 2. For τ = 2, the frequency
induced by the time-delay is precisely ωn = Ω = 1.571.

1.5 1.55
n

1.6 1.65
0

5

10

Q
(

n)

g=40
g=115
g=200

Fig. 16. Resonance in the Q factor for a forcing with fre-
quency Ω = ωn. Resonance in ẍ − x + 0.1x3 − 0.3x(t − 2) =
g cos Ωt appears when the frequency Ω equals the frequency
of the oscillations induced by the time-delay term indepen-
dently of the value of g. The amplitude of the resonance peak
grows nonmonotonically with g.

where An is the amplitude of the unforced system
at the frequency ωn, the signal is enhanced.

Figure 16 shows that a resonance appears for
Ω = ωn independently of the value of g. For this fre-
quency, the response amplitude at the frequency ωn

is greatly enlarged. In fact, the system is no longer
confined to one of the wells. This means that when
a forcing with the same frequency of the intra-well
oscillations (Ω = ωn) is added, we can make the sys-
tem oscillate in both wells with the same frequency
that it oscillated in one of them. As for the over-
damped oscillator, this is a conjugate phenomenon:
it is possible to enhance the response of a driven
oscillator by means of a time-delay with ωn = Ω and
also it is possible to enhance the oscillations induced
by a time-delay by means of a periodic forcing with
Ω = ωn.

It should be noted that the peak’s amplitude
does not always grow with g. We can see how it
reaches its biggest amplitude for g = 115, while for
g = 200 and g = 40 the amplitude is significantly
smaller. This is an important difference between the
underdamped and the overdamped case, where the
amplitude grows monotonically with g.

In Fig. 17, we show explicitly the effect of g on
the Q factor. It is observed that for g ∈ [44, 157] the
Q factor is greatly enhanced. After this region, for
bigger values of g, the Q factor falls again. Its main
implication is that it is not only important to tune
the frequency of the forcing but also its amplitude
if we want to enhance the unforced system’s oscilla-
tions. About the effect of g, the most important lim-
itation, as in VR [Landa & McClintock, 2000], lies in
the fact that the forcing needed for resonance is not
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Fig. 17. Resonance in the Q factor for an interval of values
of the amplitude of the forcing, g. The figure shows explic-
itly the dependence of the Q factor for Ω = ωn = 1.571 and
a time-delay term −0.3x(t − 2) with the amplitude of the
forcing. For g ∈ [44, 157] the Q factor is greatly enhanced
presenting resonant behavior. The arrows point at some rel-
evant values: g = (a) 84, (b) 115, (c) 200 and (d) 265.

small compared to the amplitude of the unforced
oscillator. However, the response amplitude at ωn

is greatly enhanced for a wide range of values of g.
For certain values of g, the curve for the Q

factor in Fig. 17 loses smoothness and presents
some peaks. We have studied in detail the system’s
behavior at the points named a, b, c and d for

a better understanding. For that purpose the fre-
quency spectrum of the system’s response at these
points is presented in Fig. 18.

Figures 18(a)–18(d) correspond to singular val-
ues of g. The value of g = 84 (point a), belongs to
the nonsmooth region and in the spectrum this is
reflected by the presence of numerous peaks. In fact,
it was observed that the nonsmooth region present
in Fig. 17 corresponds to the parameters for which
the system’s behavior is aperiodic.

Figure 18(b) shows the frequency spectrum for
g = 115 (point b), which corresponds to the top of
the resonant region. In this spectrum a main peak
appears for ω = 1.571, which is precisely what we
called the natural frequency of the system without
forcing.

For g = 200 (point c), the Q factor falls from
the resonance region and this is reflected in the
frequency spectrum in Fig. 18(c) as the peak for
ω = 1.571 is much more smaller than in the previ-
ous case and is approximately of the same height as
that without the forcing.

The case of g = 265 (point d), is an exception
as it corresponds to a peak in the smooth region
after the resonance. As we can see in the spectrum,

0
n
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Frequency
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n
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(a) (b)
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Fig. 18. Frequency spectrum for the response of the underdamped oscillator ẍ − x + 0.1x3 − 0.3x(t − 2) = g cos 1.571t for
different values of g. The frequency spectra were calculated for a frequency Ω = ωn = 1.571 and for some different values of
g to show how the forcing amplitude influences the response frequency. Panel (b) corresponding to g = 115 belongs to the
resonant and smooth region in Fig. 17 and it is the only one for which the peak for ωn in the spectrum is the main peak. For
values of g that do not belong to the resonance region [Panels (a), (c) and (d)], other frequencies have a bigger amplitude.
This implies that the forcing does not serve as an effective enhancer for the oscillations induced by the delay.
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Fig. 18(d), the peak’s amplitude for ω = 1.571 is
bigger than in the rest of the region after the res-
onance (compare it to g = 200) although it is not
the main peak as in the resonance region.

4. Discussion and Conclusions

In the present work, we have focused on explor-
ing the delay-induced resonance for the forced and
time-delayed Duffing oscillator considering both the
overdamped and underdamped cases.

In the case of the overdamped oscillator ẋ −
x + x3 − γx(t − τ) = g cos Ωt, we have performed a
numerical and analytical study of the bifurcations.
Then, for the parameter values for which the time-
delay induces oscillations of frequency ωn(γ, τ), we
have shown that the oscillations caused by the forc-
ing may be enhanced by means of a time-delay
term with ωn = Ω. Furthermore, we have shown
that the conjugate phenomenon is also possible,
that is, the oscillations induced by the time-delay
may be enhanced by means of a forcing with fre-
quency Ω = ωn. This is an interesting result since
the nature of both perturbations is different.

On the other hand, we have considered the
parameter values for which the time-delay does not
induce oscillations in the steady state. Even for
these values, the time-delay still induces a reso-
nance: the amplitude of the oscillations produced
by the forcing depends on the frequency of the forc-
ing, Ω, and τ , presenting a resonant behavior.

Turning now to the underdamped oscillator
ẍ + ω2

0x + βx3 + γx(t − τ) = g cos Ωt, we have
performed a numerical analysis of the bifurcations,
and we have focused on the range of values of τ
that induce periodic oscillations confined to one
well with frequency ωn(γ, τ). As for the overdamped
oscillator, we have shown that the response can be
enhanced by means of the time-delay as well as
the oscillations induced by the time-delay can be
enhanced by means of the forcing when the frequen-
cies ωn = Ω. As a difference, the Q factor varies
nonmonotonically with the amplitude of the forc-
ing, g, in the underdamped case.
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