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Resonant behavior and unpredictability in forced chaotic scattering
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Chaotic scattering in open Hamiltonian systems is a topic of fundamental interest in physics, which has been
mainly studied in the purely conservative case. However, the effect of weak perturbations in this kind of system
has been an important focus of interest in the past decade. In a previous work, the authors studied the effects of
a periodic forcing in the decay law of the survival probability, and they characterized the global properties of
escape dynamics. In the present paper, we add two important issues in the effects of periodic forcing: the fractal
dimension of the set of singularities in the scattering function and the unpredictability of the exit basins, which
is estimated by using the concept of basin entropy. Both the fractal dimension and the basin entropy exhibit
a resonant-like decrease as the forcing frequency increases. We provide a theoretical reasoning which could
justify this decreasing in the fractality near the main resonant frequency that appears for ω ≈ 1. We attribute the
decrease in the basin entropy to the reduction of the area occupied by the Kolmogorov-Arnold-Moser (KAM)
islands and the basin boundaries when the frequency is close to the resonance. On the other hand, the decay
rate of the exponential decay law shows a minimum value of the amplitude, Ac, which reflects the complete
destruction of the KAM islands in the resonance. Finally, we have found the existence of Wada basins for a wide
range of values of the frequency and the forcing amplitude. We expect that this work could be potentially useful
in research fields related to chaotic Hamiltonian pumps and oscillations in chemical reactions and companion
galaxies, among others.
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I. INTRODUCTION

Chaotic scattering in open Hamiltonian systems has been
an interesting topic of research in nonlinear dynamics and
chaos theory due to its numerous applications in several fields
of physics, such as celestial mechanics, fluid mechanics, and
atomic and nuclear physics (see Ref. [1] for an exhaustive
description of the applications of chaotic scattering).

In a generic situation of chaotic scattering, the particles
enter a finite region where they experience some sort of tran-
sient chaotic dynamics due to the interaction with a potential,
and then leave the region. In this sense, the phenomenon
could be understood as a manifestation of transient chaos
[2,3]. Far enough from the scattering region, the action of the
potential is negligible so the particle motion is essentially free.
A usual tool in chaotic scattering is the scattering function,
which represents the relation between characteristic variables
of the input and the output of the scattering region. When
the scattering is nonchaotic, the scattering function will be
formed by smooth curves, which leads to a high capacity to
predict the behavior of one of the variables from the other.
In chaotic scattering problems, the scattering function has a
set of singularities as a result of the sensitive dependence to
the initial conditions, which constitutes a hallmark of chaos.
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If we go into the neighborhood of one of the singularities,
then we will conclude that the range of variation of the output
variable does not tend to zero as the size of the neighborhood
is arbitrarily reduced.

Chaotic scattering processes have been studied in several
physical systems such as hard-disk systems [4] and billiard
systems [5,6], although much of the literature refers to open
Hamiltonian systems (e.g., Refs. [7–9]), where the Hénon-
Heiles Hamiltonian constitutes a well-known paradigm (e.g.,
Refs. [10–13]). The Hamiltonian is given by

H = 1
2 (ẋ2 + ẏ2) + 1

2 (x2 + y2) + x2y − 1
3y3. (1)

This system is conservative and hence the energy is con-
served. Furthermore, it has a critical value of the energy
Ee = 1/6 such that for lower values, i.e., E � Ee = 1/6, the
isopotential curves are closed. For larger values, E > Ee =
1/6, the isopotential curves are open and the particles can
escape from the scattering region and go to infinity through
three different exits [see Fig. 1(b)].

Much work has been done in the past decade concerning
the effect of different perturbations such as noise, dissipation,
and periodic forcing [14–20] in the escape dynamics of this
system under the assumptions of Newtonian dynamics. Re-
cently, the Hénon-Heiles Hamiltonian has been also studied
in the relativistic case [21,22]. The evolution of the fractal
dimension of the scattering function has been studied in the
presence of dissipation, noise, and relativistic corrections but
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FIG. 1. (a) Potential energy V (x, y ) associated to the the Hénon-
Heiles system. (b) The isopotential curves for different values of the
energy E ∈ [0.08, 1.5]. The curves are closed for energies below the
threshold value Ee = 1/6, and they exhibit three symmetrical exits,
separated by an angle of 2π/3 radians, when the energy E > Ee.

not in the presence of forcing. This is one of the main moti-
vations for which we have decided to analyze the periodically
forced Hénon-Heiles system.

In the context of celestial mechanics, in which the Hénon-
Heiles system arises, periodic forcing could be used for
modeling the effect of companion galaxies [23], such as the
Magellanic Clouds orbiting the Milky Way. On the other
hand, the classical mechanics of a system of two nonlinearly
coupled oscillators driven by an oscillating electric field is
relevant in the multiphoton dissociation [24]. In this case,
the energy of the system can be exchanged in a multiply
periodic manner between the system and the forcing field.
The periodic forcing is also relevant in chaotic Hamiltonian
pumps [25]. Here the phase of the driving forces provide
some indications of the existence of directed currents over
wide ranges of the incoming energy of the system. Another
interesting physical application is the dynamics of particles
placed in a spatially periodic potential under the influence of
a periodic field [26]. Here the forcing is relevant in the study
of the mean escape times from the scattering region with the
subsequent generation of a transient flow of an ensemble of
particles.

Because of the chaotic dynamics, particles with slightly
different initial conditions can describe completely different
trajectories and escape through different exits. Therefore,
chaotic scattering implies some sort of unpredictability, un-
derstanding it as the difficulty of predicting the exit through
which a trajectory will escape. In a Hamiltonian system, since
the total energy is conserved, we cannot speak about attrac-
tors, and thus, we cannot define basins of attraction [27,28].
However, in an open Hamiltonian system, we can define exit
basins [29] in an analogous way to the basins of attraction
in dissipative systems. We say that the exit basin associated
with the exit i is the set of initial conditions whose trajectories
will escape through the exit i. In the case of the Hénon-Heiles
system, there exist three exit basins and, in the nonhyperbolic
regime, a set of initial conditions for the particles that will
never escape from the scattering region. The exit basins of the
unperturbed Hénon-Heiles system verify the Wada property
[10], providing important consequences on the predictability
of the system. Here we show that this property remains in
the forced case. To quantify the unpredictability of the exit
basins, we use the basin entropy as a useful tool to analyze the

exit basins associated with a large set of parameters (in our
particular case the forcing amplitude and frequency), which is
another issue we add in this paper.

This paper is organized as follows. In Sec. II, we describe
our model, the periodically forced Hénon-Heiles system. The
effects of forcing in the fractal dimension of the scattering
function are carried out in Sec. III. In that section we also
provide a theoretical reasoning that could justify the obtained
results. The qualitative effects of the forcing term on the
basin topology and the existence of Wada basins are shown in
Sec. IV. In Sec. V, we evaluate the unpredictability of the exit
basins using the concept of basin entropy. Finally, in Sec. VI,
we present the main conclusions of this manuscript.

II. MODEL DESCRIPTION

The Hénon-Heiles system appeared in literature for the
first time in 1964 in an article by the astronomers Michel
Hénon and Carl Heiles [30]. Both researchers worked in the
search for a third integral of motion in galactic systems. The
equations of motion are given by

ẋ = p, ṗ = −x − 2xy
(2)

ẏ = q, q̇ = −y − x2 + y2,

where p and q denote the two components of the generalized
momentum.

We focus our attention in the effects of the periodic forcing
on the chaotic scattering. In this context, the periodic forcing
is introduced in a natural way as follows [31]:

ṗ = −x − 2xy + Ax sin ωxt,
(3)

q̇ = −y − x2 + y2 + Ay sin ωyt,

where we take, for simplicity and without loss of generality,
the same amplitudes (Ax = Ay = A) and frequencies (ωx =
ωy = ω). One of the physical motivations to introduce the
forcing in this kind of systems is the study of spiral galaxies in
astronomy and astrophysics in which the forcing is a natural
ingredient as shown in Ref. [23].

To intuitively visualize the system, we plot the potential
and the isopotential curves for different values of the energy
in Fig. 1.

For energies E > Ee the trajectories may come from infin-
ity or from inside the scattering region, and after interacting
with the potential, they escape through one of the exits. One
of the properties of the Hénon-Heiles system is the existence
of three highly unstable periodic orbits known as Lyapunov
orbits [32], each one located in the vicinity of one of the exits.
When a trajectory passes through a Lyapunov orbit with its
velocity vector pointing outwards of the scattering region, it
will escape to infinity and will never come back.

The addition of a periodic forcing term can change the
dynamics of the system in a drastic way [15]. In Fig. 2, we
show four trajectories in the presence of forcing of ampli-
tude A = 0.01 with different frequencies. Figures 2(a)–2(c)
show three trajectories escaping through different exits after
passing through the scattering region. In Fig. 2(d) we show a
quasiperiodic orbit. All the trajectories have been launched
from the same initial point (x0, y0) = (0.0, 0.65) with the
same energy E = 0.19. In this figure we can see how the
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FIG. 2. Trajectories in the forced Hénon-Heiles system with en-
ergy E = 0.19 and A = 0.01. Panels (a)–(c) show three trajectories
escaping through different exists due to the effects of the periodic
forcing term of frequencies ω = 0.01, ω = 0.1, and ω = 1.0, re-
spectively. Panel (d) shows a quasiperiodic orbit for the frequency
ω = 10.0. In all the trajectories the initial condition is (x0, y0) =
(0.0, 0.65). This initial condition is associated with a KAM island
in the conservative case. We can clearly observe the role of the fre-
quency, which can change drastically the destination of the particle.

frequency of a forcing term with a small amplitude can modify
the exit through which the particle escapes.

Even for values E > Ee there exist initial conditions that
generate trajectories that will remain forever within the scat-
tering region. These trajectories are typically quasiperiodic.
Quasiperiodic orbits are trajectories that periodically return
to a finite region of the phase space but never close on
themselves, which belong to a Kolmogorov-Arnold-Moser
(KAM) island [33]. The existence of these islands is one of the
main characteristics of nonhyperbolic chaotic scattering, and
as a consequence the decay law of the survival probability is
algebraic. When the scattering is hyperbolic, the stable and
unstable manifolds of the chaotic saddle are never tangent
and every saddle point is hyperbolic [34]. In addition there
are no KAM islands mixed with the chaotic saddle and,
consequently, the decay law becomes exponential. We are
particularly interested among other things in the dynamics of
the system associated with KAM islands. This justifies that
we have considered the nonhyperbolic regime, which is man-
ifested for energies in the approximate range E ∈ [Ee, 0.23]
[15], while the hyperbolic regime is associated to values of
E � 0.23.

III. FRACTAL DIMENSION

The scattering function presents fractal geometry, which
implies some sort of unpredictability when relating the input
and output variables in the scattering region. We can quantify
this unpredictability through the computation of the fractal
dimension of the set of singularities of the scattering function.
Previous researchers [35] conjectured, providing numerical

FIG. 3. Algebraic scaling between f (δ)/δ and δ for E = 0.17.
(a) For the conservative case. (b) Forced case with amplitude A =
0.05 and frequency ω = 1. The fractal dimension is estimated to be
D = 0.99 in the conservative case and D = 0.72 in the forced case.
The base of the log is 10.

evidence, that in nonhyperbolic chaotic scattering the set of
singularities of the scattering function has Lebesgue measure
zero and its fractal dimension is always D = 1. This value
implies that the difficulty to determine the output variable
from the input variable is maximal. The value D = 1 is
justified based on the algebraic decay law of the survival
probability.

To perform the calculation of the fractal dimension, we use
the uncertainty algorithm given in Refs. [36,37]. In particular,
we launch the trajectories from the line segment defined by
the points (x, y) = (0,−0.5) and (x, y) = (0, 0). In order to
fix the value of ẏ we use the tangential shooting method [10],
in which the trajectories are launched towards the scattering
region in such a way that the velocity vector is tangent to
a circumference centered at the origin and passing through
the point (x0, y0). For a given initial condition y0 we choose
another initial condition y0 + δ, where δ is some small pertur-
bation. For a fixed value of the uncertainty δ, we compute the
escape time (T ) of both trajectories, and we say that the initial
condition is uncertain if |T (y0) − T (y0 + δ)| > h, where h is
the integration step of the numerical method (a fourth-order
Runge-Kutta method in our case).

The fraction of uncertain initial conditions obeys the law
[35]:

f (δ) ∼ δ1−D. (4)

Taking logarithms in the above equation we obtain

log
f (δ)

δ
= −D log δ + k, (5)

where k is a constant. This equation allows us to obtain the
fractal dimension D computationally from the slope of the
line that must yield a representation log [f (δ)/δ] versus log δ.

In all the simulations of this section we have set h = 0.005
and we have taken 21 values of δ from 10−9 to 10−5. In Fig. 3
we represent the results for both the conservative case and
forced case with amplitude A = 0.05 and a frequency ω = 1.
In this case, in order to obtain the fraction of uncertain initial
conditions, we have taken 50 000 initial conditions for each δ.
In both cases we observe a strict linear relation between the
variables. The fractal dimension is estimated to be D = 0.99
in the conservative case and D = 0.72 in the forced case.

First, we want to clarify the effect of the frequency and
the amplitude on the fractal dimension. We have obtained the
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FIG. 4. Color-code map of the fractal dimension for several
values of the forcing frequency and amplitude in the periodically
forced Hénon-Heiles system with E = 0.17. We have used 250 ×
250 equally spaced values of the parameters. The hot colors indicate
larger values of the fractal dimension. It can be observed that, for
any nonzero amplitude, the fractal dimension exhibits a resonant-like
evolution, where ω ≈ 1 and ω ≈ 2 are the main frequencies.

fractal dimension for 250 × 250 values of A ∈ [0, 0.05] and
ω ∈ [0, 5] for E = 0.17. In each case the fraction of uncertain
initial conditions was obtained by throwing 50 000 initial
conditions selected by sweeping along the segment defined
by the points (x, y) = (0,−0.5) and (x, y) = (0, 0). A good
way to represent these results is using a color-code map in
the (ω,A) plane. The results are shown in Fig. 4. The hot
colors indicate larger values of the fractal dimension. In the
figure we observe a resonant-like behavior where the critical
values for the frequency are ω ≈ 1 and ω ≈ 2. For values
close to ω = 1 the fractal dimension drastically decreases and
does it again, less abruptly, when ω ≈ 2. When the second
resonant frequency is exceeded, the fractal dimension returns
monotonously to D ≈ 1. The decrease occurs for the same
value of ω regardless of the amplitude, although the decrease
will be greater for higher amplitude values.

In order to generalize the previous results for any energy
within the nonhyperbolic regime, we have set A = 0.05 and
computed the fractal dimension for different values of the fre-
quency and the energy. Specifically, we have taken 250 × 250
combinations of energy E ∈ [0.17, 0.20] and frequency ω ∈
[0, 5]. We have again constructed a color-code map, which
is represented in Fig. 5. From this figure it follows that the
evolution of the fractal dimension with the forcing frequency
is qualitatively the same within the nonhyperbolic regime.
In the same way as in Fig. 4, the minimum of the fractal
dimension associated with the resonant frequencies can be
clearly observed.

Now we provide a theoretical reasoning that could justify
the effects of the forcing near the resonance, using the fractal
dimension of Cantor-like structures as a parallelism. In sys-
tems where chaotic scattering occurs, particles are launched
from a line segment straddling the stable manifold of the
chaotic saddle. There is a certain interval of the input variable
which leads to trajectories that remain in the scattering region

FIG. 5. Color-code map of the fractal dimension for several
values of the forcing frequency and energy in the periodically forced
Hénon-Heiles system with A = 0.05. We have used 250 × 250
equally spaced values of the parameters. The hot colors indicate
larger values of the fractal dimension. It can be observed that, for
any energy within the nonhyperbolic regime, the fractal dimension
exhibits a resonant-like evolution, where ω ≈ 1 and ω ≈ 2 are the
main frequencies.

for at least a time T0. By a time 2T0 a fraction η of the
remaining particles leave the scatterer. If these particles are
located in the middle of the original interval, then we are left
with two equal-length subintervals of the input variable that
lead to trajectories that do not escape for, at least, a duration
of time 2T0. By a time 3T0 an additional fraction η of the
particles remaining at time 2T0 leave the scatterer. We assume
that these particles were located in the middle of the first two
subintervals. If we continue this iterative proceeding, then
we obtain a Cantor-like set of Lebesgue measure zero with
associated fractal dimension, D, given by

D = ln 2

ln [2/(1 − η)]
· (6)

On the other hand, for high amplitudes, near the resonant
frequency, say, ω ∈ [0.8, 1.2], KAM islands are destroyed and
then the decay law becomes exponential. In this case the decay
rate is related to the fraction η remaining at each stage of the
construction of the Cantor-like set by

γ (ω) = 1

T0
ln (1 − η)−1· (7)

According to Eqs. (6) and (7) we find a relation between
the fractal dimension and the decay rate

D = ln 2

ln 2 + T0γ (ω)
· (8)

If we increase ω, approaching the resonant frequency, then
the amount of particles remaining at each time is reduced and
then we expect dγ /dω > 0. On the other hand, once the res-
onant frequency is reached, if we increase ω, then we expect
dγ /dω < 0. According to Eq. (8), since γ (ω) > 0, dγ /dω >

0 implies dD/dω < 0. In the same way dγ /dω < 0 leads to
dD/dω > 0. This theoretical reasoning is in good agreement
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FIG. 6. Fractal dimension of the scattering function for E =
0.17 and different values of amplitude A = 0.01 [blue (dark gray)],
A = 0.03 [red (gray)], and A = 0.05 [yellow (light gray)]. For each
frequency, to calculate the fraction of uncertain initial conditions,
50 000 initial conditions θ0 ∈ [0, 2π ] have been launched from the
point (x0, y0 ) = (0.15,−0.25).

with the numerical results showed in Figs. 4 and 5. In order
to observe clearly the change in sign of dD/dω in Fig. 6, we
plot the computed fractal dimension of the scattering function
versus the forcing frequency for E = 0.17 and different values
of the amplitude. To perform the dimension calculation we
launched, for each frequency, 50 000 initial conditions θ0 ∈
[0, 2π ] from the point (x0, y0) = (0.15,−0.25). In this figure,
we clearly observe the decrease of the fractal dimension near
the frequencies ω ≈ 1 and ω ≈ 2. The resonant-like behavior
occurs for the three amplitudes considered, being the decrease
of the fractal dimension greater for larger amplitudes.

IV. BASIN TOPOLOGY

To obtain the exit basins, we choose a uniform grid of
500 × 500 initial conditions in the plotted region. We plot

each initial condition with a different color depending on the
exit through which the trajectory escapes. We have selected
the initial conditions in the physical space (x, y) using the
tangential shooting method. In Fig. 7 we represent two exit
basins in the conservative case with different values of the
energy. In the basin obtained for E = 0.17 we can observe
well-defined regions where the particles will never escape
(nonhyperbolic regime), but the same does not occur for E =
0.25 (hyperbolic regime).

The destruction of the KAM islands can be observed
intuitively in the exit basins. For two different energies in
the nonhyperbolic regime (E = 0.17 and E = 0.19) we have
obtained the exit basins with resolution 500 × 500 for a
forcing amplitude A = 0.05 and 51 frequencies in the range
ω ∈ [0, 5]. The only frequencies that lead to the destruction of
the KAM islands are ω = 0.9 and ω = 1.0. In Fig. 8 we plot
the exit basins for ω = 0.0 and ω = 1.0.

A natural question at this point is: What is the critical value
of the forcing amplitude, Ac, that allows the destruction of the
KAM islands in the resonance? We have obtained its value
for 14 values of the energy in the range E ∈ [0.17, 0.2] for
ω = 0.9. The value obtained is Ac = 0.015 in all cases.

In order to show the decrease of the area occupied by the
KAM islands in Fig. 9, we represent the fraction of the area
of the exit basins occupied by the KAM islands, fKAM, in
function of both the forcing frequency (for A = 0.025) and
the forcing amplitude (for ω = 0.9). In both cases, the energy
is 0.19. We can observe in Fig. 9(a) the complete destruction
of the KAM islands when the forcing frequency is close to the
resonance ω ≈ 1. For high values of the frequency, the area
of the KAM islands returns to the value of the conservative
case (fKAM ≈ 4%). In Fig. 9(b) we can visualize the critical
amplitude value (Ac ≈ 0.015) that allows the destruction of
the KAM islands near the resonance.

In nonhyperbolic chaotic scattering the particle decay law
is algebraic and there exist KAM islands mixed with the
chaotic saddle in the phase space. But if the amplitude is large
enough, a forcing close to the resonance frequency ω = 1
destroys the KAM islands. Therefore all the particles will
escape in a finite time and the decay law becomes exponential,

R(t ) ∼ e−γ t , (9)

FIG. 7. Exit basins in the physical space (x, y ) for the conservative Hénon-Heiles system for the energy values indicated in each figure.
The color code is as follows: green (light gray), blue (dark gray), and red (gray) correspond to the initial conditions that lead to exits 1, 2, and
3, respectively, and white corresponds to bounded orbits that never escape.

062206-5



NIETO, SEOANE, ALVARELLOS, AND SANJUÁN PHYSICAL REVIEW E 98, 062206 (2018)

FIG. 8. Exit basins in the physical space (x, y ) for the forced
Hénon-Heiles system when the forcing amplitude is A = 0.05. The
energy value is E = 0.17 (upper) and E = 0.19 (lower) and the
frequency value is indicated in each figure. The color code is as
described in the caption to Fig. 7.

where R(t ) is the fraction of particles that survive at time t

and γ � 0 is the decay rate.
For values ω ≈ 1 the decay rate is approximately con-

stant within the nonhyperbolic regime. For 31 values of the
energy in the range E ∈ [0.17, 0.2] we have obtained (with
A = 0.05) γ = (3.318 ± 0.033) × 10−2 for ω = 1.0 and γ =
(5.648 ± 0.097) × 10−2 for ω = 0.9. We have considered an
error εγ = 3σ (γ )/

√
n, where n = 31 is the number of sam-

ples and σ is the standard deviation. To obtain the decay rate
we have used 106 initial conditions, using an equally spaced
1000 × 1000 grid in the physical space (x, y). For each initial
condition we compute the escape time and determine the
fraction that remains in steps �t = 20. Finally, we represent
ln R versus t and we obtain the decay rate from the slope
of the straight line. For example, Fig. 10 shows the straight
line obtained by the least-squares method for E = 0.19 with
a frequency forcing ω = 0.9 and amplitude A = 0.05.

Another consequence of a forcing with a frequency
close to resonance is the decrease in the area occupied
by the basin boundaries. Given an energy E = 0.19 and a

t
0 50 100 150 200 250

ln
R

-12

-10

-8

-6

-4

-2

0

FIG. 10. Exponential decay law for the particles remaining in the
scattering region at time t . R denotes the fraction of particles that
survive in a time t . The energy is E = 0.19 and the forcing amplitude
and frequency are A = 0.05 and ω = 0.9. The decay rate is estimated
to be γ = 5.45 × 10−2.

forcing frequency ω = 0.9, the fraction of the area of the
basins occupied by the boundaries decreases with increasing
amplitude, as shown in Fig. 11, where we plot the boundaries
of the basins for different values of the amplitude. The fraction
occupied by the boundaries is 0.82 (A = 0), 0.71 (A = 0.01),
0.45 (A = 0.05), and 0.23 (A = 0.1).

On the other hand, many dynamical systems, with three or
more coexisting attractors (for dissipative systems) or escapes
(for open Hamiltonian systems), exhibit a strong topological
property known as the Wada property [38]. If a boundary
point is at the same time a boundary point of three or more
basins, then we call it a Wada point. Moreover, if all the
points in the boundary are Wada points, then the basin has
the Wada property. In this section, we have shown that the
incorporation of a forcing term can generate drastic changes
in the basin topology. However, do these changes destroy the
Wada property or, on the contrary, is it sufficiently robust
to remain? The usual methods to determine when a basin
possesses the Wada property require a detailed knowledge of

FIG. 9. Fraction of the area of the exit basins occupied by the KAM islands in function of the forcing frequency (a) and in function of the
forcing amplitude (b). In panel (a) the value of the amplitude is A = 0.025 and we can observe that fKAM = 0 when ω ≈ 1. In panel (b) the
value of the frequency is ω = 0.9 and we can verify the existence of a value Ac ≈ 0.015 for which fKAM = 0. In both figures the energy is
E = 0.19.
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FIG. 11. Boundaries of the exit basins in the physical space
(x, y ) when the energy is E = 0.19 and the forcing frequency ω =
0.9. The value of the amplitude is indicated in each figure. The
fraction occupied by the boundaries is 0.82 (A = 0), 0.71 (A =
0.01), 0.45 (A = 0.05), and 0.23 (A = 0.1).

the system [39] or the precise computation of many trajec-
tories [40]. We want to determine if the basins of the forced
Hénon-Heiles system are Wada. To do this, it is necessary to
carry out the verification for a large set of values of the forcing
parameters. Therefore, the previous methods would require
years of parallel computing. Fortunately, a new technique to
determine when a basin is Wada has been recently developed
[41]. This method, known as the merging method, allows us
to test the Wada property with a much smaller computational
effort. The method is based on an intuitive observation: A
basin is Wada if the boundary remains unaltered after merging
the basins. To illustrate this point, in the upper panel of Fig. 12
we show the result of merging the basins by pairs, keeping
the third unchanged, in the case of the conservative Hénon-
Heiles with E = 0.25. In the lower panel, we can observe at

naked eye that although the merged basins are different, the
boundaries are the same for the three cases.

Although our intuition makes us feel that the boundaries
of Fig. 12 are identical, the computer states that they are
not exactly the same. This is because we would require an
arbitrarily high resolution to ensure the perfect equality. In
practice, the method requires us to fatten the pixels using the
fattening parameter r , which is the radius of the fat pixel
according to the chessboard distance.

We have computed 10 000 basins (E = 0.19) of resolution
500 × 500 for different values of the forcing amplitude A ∈
[0, 0.05] and the forcing frequency ω ∈ [0, 5]. For each basin
we have tested the Wada property for different values of the
fattening parameter. We represent in Fig. 13 the percentage of
non-Wada basins in function of r . For r = 1 the method does
not detect any Wada basin while for r = 3 only 7 of the 10 000
basins are non-Wada. For r > 3 all the basins satisfy the Wada
property.

If a basin is non-Wada, then we can expect a large number
of points on the boundary, nb, that are non-Wada points, nNW.
It might happen that the basin is Wada, and the method would
show a low number of non-Wada points due to the finite
resolution of the basin. By simply increasing the fattening
parameter r , the number of non-Wada points goes to zero. To
verify this, we calculate the percentage of points of the bound-
ary that are non-Wada points, nNW/nb. In Fig. 14 we show two
color-code maps for r = 1 and r = 2 in the parameter plane
(A,w). Hot colors indicate a high percentage of non-Wada
points. For r = 1 the basin that presents more points does
not reach 5% of non-Wada points, while for r = 2 does not
reach 0.09%. These results suggest false negatives due to
finite resolution. To verify this, we have computed basins of
resolution 2000 × 2000 for the seven problematic basins that
are non-Wada for r = 3. In all cases the method confirms,
for r = 3, that all of them are Wada basins. It is important

FIG. 12. The upper panels represent the result of the action of merging the basins by pairs according to the color code “green + blue
= cyan (light gray in the first figure),” “green + red = yellow (light gray in the second figure),” and “blue + red = magenta (dark gray
in the third figure).” The lower panels show the corresponding boundaries between the merged basins and the remaining basin. The energy
of the system is E = 0.25 and we can see at naked eye that the boundaries are almost identical, then our intuition says that the basins possess
the Wada property.
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FIG. 13. Percentage of the 10 000 basins obtained for different
values of the forcing parameters (A ∈ [0, 0.05] and ω ∈ [0, 5]) that
are non-Wada, in function of the fattening parameter r . The number
of non-Wada basins decreases as the fattening parameter r increases,
until reaching 0% for r > 3, which implies that according to the
merging method that all the basins are Wada.

to observe that the fattening parameter r = 3 implies a better
precision if we use resolution 2000 instead of 500, since the
fattened pixel covers a region 4 times smaller in phase space.

Based on the previous results, we consider that the exit
basins of the forced Hénon-Heiles system are Wada, at
least for the not negligible amplitude values that we have
considered.

V. BASIN ENTROPY

Sometimes in nonlinear dynamics, unpredictability is de-
fined as the difficulty to predict the evolution of the orbits
[42–44]. In the context of open Hamiltonian systems, we
consider unpredictability as the difficulty in determining the
final state of a system from certain initial conditions. In this
sense, the topology of the exit basins in open Hamiltonian
systems, or the topology of the basins of attraction in dis-
sipative systems, is closely related to the unpredictability of
the system. One probably say that in Fig. 7 the basin for
E = 0.17 is more unpredictable than the basin for E = 0.25.

The basin entropy [45] is a tool that allows us to quantify the
unpredictability that we detect intuitively in the basins. It also
allows to study and quantify the unpredictability for a large
set of basins.

The method to compute the basin entropy is as follows. We
randomly select N overlapping square boxes of linear size ε,
each one filled with nt trajectories. The entropy of every box
i is given by:

Si =
mi∑

j=1

pi,j ln

(
1

pi,j

)
, (10)

where mi is the number of different destinations (colors) in
the box i and ni,j is the number of points with color j in the
box. In the Hénon-Heiles system mi ∈ [1, 3] in the hyperbolic
regime and mi ∈ [1, 4] in the nonhyperbolic regimen, due to
the existence of quasiperiodic orbits. pi,j is the probability of
each color j in the box i. In practice we do not know this
probability and we approximate it from the quotient between
the number of trajectories with color j in the box i and the
total number of trajectories in the box. Therefore we can
express the equation (10) as:

Si =
mi∑

j=1

ni,j

nt

ln

(
nt

ni,j

)
. (11)

Consequently, the entropy associated to all the N boxes is

S =
N∑

i=1

mi∑
j=1

ni,j

nt

ln

(
nt

ni,j

)
. (12)

Finally, we obtain the basin entropy by scaling the total
entropy S to the total number of boxes, Sb = S/N . After this
scaling the basin entropy is normalized between 0 and ln Nd ,
where Nd is the number of different destinations. The value 0
is associated with a basin that has a unique destination and the
value ln Nd is associated with a basin with equiprobable and
randomly distributed destinations.

In all the simulations of this section we work in the region
� ∈ [−1, 1] × [−0.8, 1.2] of the physical space (x, y), using

FIG. 14. Color-code maps of the percentage of non-Wada points in the boundaries of the exit basins in the periodically forced Hénon-Heiles
system, with E = 0.19. We have used 100 × 100 equally spaced values of the parameters (A,ω) to compute these figures. The hot colors
indicate larger values of percentage of non-Wada points. The value of the fattening paremeter is r = 1 (left) and r = 2 (right).
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FIG. 15. Color-code map of the basin entropy for several values
of the forcing frequency and amplitude, with E = 0.19. We have
used 100 × 100 values of the parameters. The hot colors indicate
larger values of the basin entropy.

exit basins of resolution 500 × 500. The value of the basin
entropy depends on the linear box size ε. Therefore we have
to select an adequate value of ε that allows a reliable portrait of
the unpredictability of the basins. We have chosen ε = 0.02,
that is, 25 trajectories in each box. We consider that this value
accounts for the internal structure of the basins and allows a
statistically significant approximation of the probabilities of
each color in the box.

We have mentioned that some of the effects of a forcing
close to the resonant frequency are the destruction of the
KAM islands and the decrease in the area occupied by the
boundaries of the exit basins. The basin entropy gives an
account, among other things, for these two important changes
in the topology and allows a reliable portrait of the evolution
of unpredictability according to the forcing frequency and
amplitude. For E = 0.19 we have computed 100 × 100 basins
for different combinations of amplitude A ∈ [0, 0.05] and
frequency ω ∈ [0, 5]. For each of these 10 000 basins we have
obtained the basin entropy, shown in the color-code map of
Fig. 15.

From the color-code map we conclude that there is a
resonant-like behavior for the evolution of the unpredictability
of the exit basins. The main resonant frequency is ω ≈ 1
and it coincides with that obtained in the case of the fractal
dimension of the scattering function in Sec. III.

The color-code map also shows that the basin entropy
exceeds the value of the unperturbed case for a frequency
value ω ≈ 2.5. To observe this point with greater clarity,
in Fig. 16 we represent the basin entropy as a function of
the forcing frequency for E = 0.19 and A = 0.05. In this
simulation, 100 exit basins with a resolution 1000 × 1000
have been computed. In Fig. 16 we can distinguish three
different regions: (a) ω ∈ (0, 2.0), resonant-like behavior; (b)
ω ∈ (2.0, 3.2), maximum value of basin entropy; and (c) ω ∈
(3.2, 10.0), the forcing becomes unproductive. In region (a)
the basin entropy decreases until reaching its minimum value
for ω ≈ 1.0 and then increases until reaching the value of

FIG. 16. Evolution of the basin entropy with the frequency of
the periodic forcing for E = 0.19 and A = 0.05. The dashed line
represents the value of the basin entropy of the conservative case
(Sb ≈ 0.8). Three different regions are represented: (a) ω ∈ (0, 2.0),
(b) ω ∈ (2.0, 3.2), and (c) ω ∈ (3.2, 10.0). It can be seen the
resonant-like behavior at ω ≈ 1 and a maximum in the basin entropy
for ω ≈ 2.5.

the unperturbed case. In region (b) the maximum value of
the basin entropy is obtained for ω ≈ 2.5. For this frequency
value the fractal dimension of the scattering function was not
noticeably affected, but the same does not happen with the
basin entropy. This is because this maximum is associated
with an increase in the area occupied by the KAM islands.
Since in our simulations we have considered that the particles
that never escape constitute a destination of the dynamical
system, the basin entropy is influenced by both the topology
and the area of the KAM islands. The scattering function rep-
resents the relation between the escape times of particles and
one of the characteristic parameters of the system. Therefore
trajectories that never escape are excluded from the scattering
function and their fractality is not influenced by the changes in
the KAM islands. Finally, in region (c) the forcing begins to
be irrelevant and the basin entropy converges monotonously
to the unperturbed case, as shown in the horizontal dashed
line. In this last situation, the frequency has no visible effects
on the unpredictability of the system when it is large enough,
as shown in Ref. [31]. This is due to the fact that for large
frequencies, ω ≈ 10, the forcing term, A sin ωt , can be con-
sidered as a constant as occurs in any oscillating system. On
the other hand, for low-amplitude values, that constant term is
very small and then the evolution of the system is governed by
the inertial behavior, which corresponds with the conservative
case. That is the reason why, for high-frequency values, we
have recovered the basin entropy of the conservative case,
namely Sb = 0.8.

VI. CONCLUSIONS

In summary, our investigations in forced chaotic scattering
reveal a resonant-like behavior in the fractal dimension of
the scattering function and also in the uncertainty of the exit
basins, which has been measured using the the uncertainty
algorithm and the basin entropy, respectively. In line with pre-
vious works, the main resonant frequency obtained is ω ≈ 1.0,
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for which both magnitudes are drastically reduced. As the
forcing frequency increases, moving away from resonance,
the forcing becomes irrelevant and the fractal dimension and
the basin entropy return to their value associated with the
conservative case. The resonant-like behavior appears for
any nonzero amplitude and for any energy value within the
nonhyperbolic regime. The decrease in the basin entropy
near the main resonant frequency is due, among other things,
to the reduction of the area occupied by the KAM islands and
the basin boundaries. We have provided theoretical reasoning
that could justify the resonant-like behavior in the fractal
dimension. These arguments, based on Cantor-like structures,
relate the changes in the decay rate of the exponential decay
law with the fractal dimension.

We have explored the changes in the basin topology and
in the escape dynamics in the resonance. We have found the
amplitude value, Ac, that allows the complete destruction of
the KAM islands, which is approximately constant within the
nonhyperbolic regime. The same happens with the decay rate
of the exponential decay law. In spite of all these changes
generated by the forcing, the exit basins continue possessing
the Wada property, which has been tested using the merging
method.

As we mentioned in the Introduction, one field of physical
interest where our work can potentially be useful is in the
context of celestial mechanics where periodic forcing could
be used for modeling the effect of companion galaxies [23],
such as the Magellanic Clouds orbiting the Milky Way. In
this context, the efficiency of phase mixing in presence of

periodic forcing increases dramatically as compared with the
conservative situation. This drastic increase is reached by
both accelerating the approach towards a near-equilibrium and
facilitating diffusion along the Arnold web so as to accelerate
the approach towards a true equilibrium. This relevant role
due to the periodic forcing typically scales logarithmically
with the amplitude which may imply that it acts via a resonant
coupling. Besides, in the context of galactic astronomy, the
forcing term has other important implications since colored
noise, from a mathematical point of view, is a superposition of
periodic perturbations combined with random phases, which
is very useful to model a high-density-cluster environment.
Here the forcing acting on any given galaxy is the result of
complex interactions with a variety of different close galaxies.
Colored noise might be also used to model molecular clouds
in which, as we explained before, can be modeled as a set
of periodic perturbations as the ones we have dealt in our
work.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of
Economy and Competitiveness under Project No. FIS2013-
40653-P and by the Spanish State Research Agency (AEI)
and the European Regional Development Fund (FEDER)
under Project No. FIS2016-76883-P. M.A.F.S. acknowledges
the jointly sponsored financial support by the Fulbright Pro-
gram and the Spanish Ministry of Education (Program No.
FMECD-ST-2016).

[1] J. M. Seoane and M. A. F. Sanjuán, Rep. Prog. Phys 76, 016001
(2012).

[2] Y.-C. Lai and T. Tél, Transient Chaos: Complex Dynamics on
Finite-Time Scales (Springer, New York, 2010).

[3] T. Tél and M. Gruiz, Chaotic Dynamics: An Introduction Based
on Classical Mechanics (Cambridge University Press, New
York, 2006).

[4] P. Gaspard, Chaos, Scattering and Statistical Mechanics
(Cambridge University Press, Cambridge, England, 1998).

[5] H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge
University Press, Cambridge, England, 1999).

[6] H. D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C.
Rangacharyulu, A. Richter, P. Schardt, and H. A. Weidenmüller,
Phys. Rev. Lett. 68, 2867 (1992).

[7] G. Contopoulos and D. Kaufmann, Astron. Astrophys. 253, 379
(1992).

[8] G. Contopoulos, H. E. Kandrup, and D. Kaufmann, Physica D
64, 310 (1993).

[9] H. E. Kandrup, C. Siopis, G. Contopoulos, and R. Dvorak,
Chaos 9, 381 (1999).

[10] J. Aguirre, J. C. Vallejo, and M. A. F. Sanjuán, Phys. Rev. E 64,
066208 (2001).

[11] R. Barrio, F. Blesa, and S. Serrano, Europhys. Lett. 82, 10003
(2008).

[12] R. Barrio, F. Blesa, and S. Serrano, New J. Phys. 11, 053004
(2009).

[13] J. C. Vallejo, J. Aguirre, and M. A. F. Sanjuán, Phys. Lett. A
311, 26 (2003).

[14] J. D. Bernal, J. M. Seoane, and M. A. F. Sanjuán, Phys. Rev. E
88, 032914 (2013).

[15] F. Blesa, J. M. Seoane, R. Barrio, and M. A. F. Sanjuán, Int. J.
Bifurcat. Chaos 22, 1230010 (2012).

[16] J. M. Seoane, J. Aguirre, M. A. F. Sanjuán, and Y.-C. Lai, Chaos
16, 023101 (2006).

[17] J. M. Seoane, M. A. F. Sanjuán, and Y.-C. Lai, Phys. Rev. E 76,
016208 (2007).

[18] J. M. Seoane and M. A. F. Sanjuán, Phys. Lett. A 372, 110
(2008).

[19] J. M. Seoane, L. Huang, M. A. F. Sanjuán, and Y.-C. Lai, Phys.
Rev. E 79, 047202 (2009).

[20] J. M. Seoane and M. A. F. Sanjuán, Int. J. Bifurcat. Chaos 20,
2783 (2010).

[21] J. D. Bernal, J. M. Seoane, and M. A. F. Sanjuán, Phys. Rev. E
95, 032205 (2017).

[22] J. D. Bernal, J. M. Seoane, and M. A. F. Sanjuán, Phys. Rev. E
97, 042214 (2018).

[23] H. E. Kandrup and S. J. Novotny, Cel. Mech. Dyn. Astr. 88, 1
(2004).

[24] R. Ramaswamy, P. Siders, and R. A. Marcus, J. Chem. Phys.
74, 4418 (1981).

[25] T. Dittrich, M. Gutiérrez, and G. Sinuco, Physica A 327, 145
(2003).

062206-10

https://doi.org/10.1088/0034-4885/76/1/016001
https://doi.org/10.1088/0034-4885/76/1/016001
https://doi.org/10.1088/0034-4885/76/1/016001
https://doi.org/10.1088/0034-4885/76/1/016001
https://doi.org/10.1103/PhysRevLett.68.2867
https://doi.org/10.1103/PhysRevLett.68.2867
https://doi.org/10.1103/PhysRevLett.68.2867
https://doi.org/10.1103/PhysRevLett.68.2867
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1016/S0375-9601(03)00452-3
https://doi.org/10.1016/S0375-9601(03)00452-3
https://doi.org/10.1016/S0375-9601(03)00452-3
https://doi.org/10.1016/S0375-9601(03)00452-3
https://doi.org/10.1103/PhysRevE.88.032914
https://doi.org/10.1103/PhysRevE.88.032914
https://doi.org/10.1103/PhysRevE.88.032914
https://doi.org/10.1103/PhysRevE.88.032914
https://doi.org/10.1142/S0218127412300108
https://doi.org/10.1142/S0218127412300108
https://doi.org/10.1142/S0218127412300108
https://doi.org/10.1142/S0218127412300108
https://doi.org/10.1063/1.2173342
https://doi.org/10.1063/1.2173342
https://doi.org/10.1063/1.2173342
https://doi.org/10.1063/1.2173342
https://doi.org/10.1103/PhysRevE.76.016208
https://doi.org/10.1103/PhysRevE.76.016208
https://doi.org/10.1103/PhysRevE.76.016208
https://doi.org/10.1103/PhysRevE.76.016208
https://doi.org/10.1016/j.physleta.2007.06.079
https://doi.org/10.1016/j.physleta.2007.06.079
https://doi.org/10.1016/j.physleta.2007.06.079
https://doi.org/10.1016/j.physleta.2007.06.079
https://doi.org/10.1103/PhysRevE.79.047202
https://doi.org/10.1103/PhysRevE.79.047202
https://doi.org/10.1103/PhysRevE.79.047202
https://doi.org/10.1103/PhysRevE.79.047202
https://doi.org/10.1142/S0218127410027350
https://doi.org/10.1142/S0218127410027350
https://doi.org/10.1142/S0218127410027350
https://doi.org/10.1142/S0218127410027350
https://doi.org/10.1103/PhysRevE.95.032205
https://doi.org/10.1103/PhysRevE.95.032205
https://doi.org/10.1103/PhysRevE.95.032205
https://doi.org/10.1103/PhysRevE.95.032205
https://doi.org/10.1103/PhysRevE.97.042214
https://doi.org/10.1103/PhysRevE.97.042214
https://doi.org/10.1103/PhysRevE.97.042214
https://doi.org/10.1103/PhysRevE.97.042214
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1063/1.441683
https://doi.org/10.1063/1.441683
https://doi.org/10.1063/1.441683
https://doi.org/10.1063/1.441683
https://doi.org/10.1016/S0378-4371(03)00467-9
https://doi.org/10.1016/S0378-4371(03)00467-9
https://doi.org/10.1016/S0378-4371(03)00467-9
https://doi.org/10.1016/S0378-4371(03)00467-9


RESONANT BEHAVIOR AND UNPREDICTABILITY IN … PHYSICAL REVIEW E 98, 062206 (2018)

[26] D. Hennig, L. Schimansky-Geier, and P. Hänggi, Eur. Phys. J.
B 62, 493 (2008).

[27] H. E. Nusse and J. A. Yorke, Science 271, 1376 (1996).
[28] E. Ott, Rev. Mod. Phys. 53, 655 (1981).
[29] G. Contopoulos, Order and Chaos in Dynamical Astronomy

(Springer, Berlin, 2002).
[30] M. Hénon and C. Heiles, Astron. J. 69, 73 (1964).
[31] F. Blesa, J. M. Seoane, R. Barrio, and M. A. F. Sanjuán, Phys.

Rev. E 89, 042909 (2014).
[32] G. Contopoulos, Astron. Astrophys. 231, 41 (1990).
[33] E. Ott, Chaos in Dynamical Systems (Cambridge University

Press, New York, 1993).
[34] J. Aguirre, R. L. Viana, and M. A. F. Sanjuán, Rev. Mod. Phys.

81, 333 (2009).
[35] Y.-T. Lau, J. M. Finn, and E. Ott, Phys. Rev. Lett. 66, 978

(1991).

[36] C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys.
Lett. A 99, 415 (1983).

[37] S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica
D 17, 125 (1985).

[38] J. Kennedy and J. A. Yorke, Physica D 51, 213 (1991).
[39] H. E. Nusse and J. A. Yorke, Physica D 90, 242 (1996).
[40] A. Daza, A. Wagemakers, and M. A. F. Sanjuán, Sci. Rep. 6,

31416 (2016).
[41] A. Daza, A. Wagemakers, and M. A. F. Sanjuán, Sci. Rep. 8,

9954 (2018).
[42] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Trans. Am.

Math. Soc. 114, 309 (1965).
[43] B. R. Hunt and E. Ott, Chaos 25, 097618 (2015).
[44] Y. G. Sinai, Dokl. Akad. Sci. USSR 124, 768 (1959).
[45] A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and

M. A. F. Sanjuán, Sci. Rep. 5, 16579 (2016).

062206-11

https://doi.org/10.1140/epjb/e2008-00196-7
https://doi.org/10.1140/epjb/e2008-00196-7
https://doi.org/10.1140/epjb/e2008-00196-7
https://doi.org/10.1140/epjb/e2008-00196-7
https://doi.org/10.1126/science.271.5254.1376
https://doi.org/10.1126/science.271.5254.1376
https://doi.org/10.1126/science.271.5254.1376
https://doi.org/10.1126/science.271.5254.1376
https://doi.org/10.1103/RevModPhys.53.655
https://doi.org/10.1103/RevModPhys.53.655
https://doi.org/10.1103/RevModPhys.53.655
https://doi.org/10.1103/RevModPhys.53.655
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/RevModPhys.81.333
https://doi.org/10.1103/RevModPhys.81.333
https://doi.org/10.1103/RevModPhys.81.333
https://doi.org/10.1103/RevModPhys.81.333
https://doi.org/10.1103/PhysRevLett.66.978
https://doi.org/10.1103/PhysRevLett.66.978
https://doi.org/10.1103/PhysRevLett.66.978
https://doi.org/10.1103/PhysRevLett.66.978
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1016/0167-2789(85)90001-6
https://doi.org/10.1016/0167-2789(85)90001-6
https://doi.org/10.1016/0167-2789(85)90001-6
https://doi.org/10.1016/0167-2789(85)90001-6
https://doi.org/10.1016/0167-2789(91)90234-Z
https://doi.org/10.1016/0167-2789(91)90234-Z
https://doi.org/10.1016/0167-2789(91)90234-Z
https://doi.org/10.1016/0167-2789(91)90234-Z
https://doi.org/10.1016/0167-2789(95)00249-9
https://doi.org/10.1016/0167-2789(95)00249-9
https://doi.org/10.1016/0167-2789(95)00249-9
https://doi.org/10.1016/0167-2789(95)00249-9
https://doi.org/10.1038/srep31416
https://doi.org/10.1038/srep31416
https://doi.org/10.1038/srep31416
https://doi.org/10.1038/srep31416
https://doi.org/10.1038/s41598-018-28119-0
https://doi.org/10.1038/s41598-018-28119-0
https://doi.org/10.1038/s41598-018-28119-0
https://doi.org/10.1038/s41598-018-28119-0
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1063/1.4922973
https://doi.org/10.1063/1.4922973
https://doi.org/10.1063/1.4922973
https://doi.org/10.1063/1.4922973
https://doi.org/10.1038/srep16579
https://doi.org/10.1038/srep16579
https://doi.org/10.1038/srep16579
https://doi.org/10.1038/srep16579



