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A systematic procedure to numerically compute a horseshoe map is presented. This new method
uses piecewise functions and expresses the required operations by means of elementary transfor-
mations, such as translations, scalings, projections and rotations. By repeatedly combining such
transformations, arbitrarily complex folding structures can be created. We show the potential
of these horseshoe piecewise maps to illustrate several central concepts of nonlinear dynamical
systems, as for example, the Wada property.
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1. Introduction

The Smale horseshoe map is one of the hallmarks of
chaos. It was devised in the 1960’s by Smale [1967]
to reproduce the dynamics of a chaotic flow in the
neighborhood of a given periodic orbit. It describes
in the simplest way the dynamics of homoclinic
tangles, which were encountered by Poincaré [1890]
and were intensively studied by Birkhoff [1927], and
later on by Mary Catwright and John Littlewood,
among others [Catwright & Littlewood, 1945, 1947;
Levinson, 1949].

The horseshoe map is commonly represented
starting from a set with the shape of a stadium.
This set is flattened along its shortest side and
stretched along the orthogonal direction, which cor-
responds to the largest side of the stadium. Finally,
the resulting set is folded acquiring the shape of
a horseshoe and embedded in the original set. A
two-dimensional fixed point theorem demonstrates

that every continuous map defined on the plane,
which iterates some set transversally to itself, con-
tains a fixed point [Alligood et al., 1996]. Since the
horseshoe has two legs, there must be at least two
fixed points in the original domain [see Figs. 1(a)
and 1(b)]. These two fixed points are saddles, whose
invariant manifolds take after the iterations of the
horseshoe, as shown in Fig. 1(c). A third fixed
point outside the region defined by the three ver-
tical strips represents an attractor, as depicted in
red color in Fig. 1(a). All the initial conditions
belonging to the stadium, except for an invari-
ant set of zero Lesbesgue measure, end up in such
attractor.

The dynamics of the horseshoe map has been
widely studied using Markov partitions and sym-
bolic dynamics [Adler, 1998; Devaney, 1989]. Also
simpler discontinuous maps, as for example, the
baker map [Halmos, 2017], can be devised, which
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(a) (b)

(c)

Fig. 1. (a) The original set S with the shape of a stadium whose iterate by means of the Smale horseshoe map H is embedded
into itself. In red we show an attracting fixed point. (b) The horseshoe as the first iteration of the stadium H(S). The colors
match the initial set and the images through the map. Two saddle fixed points are shown in yellow. (c) The invariant manifolds
associated with one of the saddles are shown before, and in blue, a transverse homoclinic intersection between the stable and
the unstable manifolds.

allow to easily compute their Lyapunov exponents
in order to prove the existence of chaotic trajec-
tories [Alligood et al., 1996]. Nevertheless, as far
as we are concerned, a set of equations that per-
mit to compute a continuous map that represents
a horseshoe with any desired number of foldings is
still missing. The relevance of such a mapping lies
in the fact that it can be used to study properties
of chaotic dynamical systems and, perhaps more
importantly nowadays, to develop or simplify con-
trol methods based on the dynamics of the horse-
shoe [Zambrano et al., 2008].

In the present work we introduce a mechanis-
tic procedure to construct two-dimensional contin-
uous mappings that allow to numerically compute
horseshoes with any desired number of foldings. The
paper is organized as follows. In Sec. 2, we describe
four two-dimensional continuous maps, which can
be composed to obtain the Smale horseshoe map.
In Sec. 3, we present an example that shows how
to extend the map to represent more complicated
horseshoes, with more than one folding. Finally, in
Sec. 4, we present several applications of these new
piecewise mappings.

2. Flatten, Stretch and Fold

A hyperbolic chaotic flow consists in an unstable
and bounded motion, for which it is necessary that
some directions in phase space are locally expan-
sive (unstable) and some others are contractive
(stable). In particular, if an ensemble of initial con-
ditions in phase space is considered, after a very
short time, this set will have expanded along some
directions and contracted along some others. For
simplicity, suppose that the dynamical system is
three-dimensional and that a Poincaré map can
be constructed at the plane z = 0. As shown in
Fig. 2(a), we begin with a square Q ⊂ R

2 as the
initial set. Then, suppose that a forward iteration
of the map expands this set linearly and homo-
geneously in the direction of the x-axis by some
amount and contracts it in the other direction y in
a similar way. Obviously, we obtain as a result a
rectangle, as depicted in Fig. 2(b).

If we carry out this linear transformation
repeatedly, we would asymptotically obtain an
unbounded set in the direction of the x-axis, iso-
morphic to the real line. Therefore, if we want to
keep the evolving set bounded, we need to provide
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(a)

(b)

(c)

(d)

(e)

Fig. 2. (a) The unit square Q ⊂ R
2. (b) The result of con-

tracting and stretching the unit square. (c) Translation of
the set obtained in (b). (d) and (e) The unit square is folded,
obtaining the shape of a horseshoe.

a mechanism to bend the set against the expand-
ing direction. It is precisely the nonlinearity that
introduces the curvature required for the bend-
ing, maintaining the dynamics trapped in some

region of phase space. This requirement is essential,
since smooth linear transformations always trans-
form parallel lines into parallel lines. In summary,
a continuous chaotic dynamical system requires at
least three ingredients: a contraction and a stretch
(saddles), which can be carried out by simple linear
transformations, and a folding, for which a nonlin-
ear transformation is necessary.

Based on these ideas, we can build a horseshoe
in a very simple manner by a composition of ele-
mentary transformations. We follow the steps rep-
resented in Fig. 2. First of all, we start with the unit
square Q = [0, 1]×[0, 1] and carry out the flattening
and the stretching shown in Fig. 2(b), by means of
the function H1(x, y), which is defined as follows

H1(x, y) =




(
x,

y

4

)
for x < 0,

(
17
5x

,
y

4

)
for 0 ≤ x ≤ 1,

(
x,

y

4

)
+
(

12
5

, 0
)

for x > 1.

(1)

Note that the stretching only applies in the
region 0 ≤ x ≤ 1 and that we have added a trans-
lation for x > 1. The reason for such restriction is
that we want to keep the shape of the blue fold-
ing, which lies out of the unit square after the first
iteration [see Fig. 2(e)], when we apply the second
iteration of the map. In this manner, we avoid its
expansion along the x-axis. Instead of stretching it,
we simply translate it in such a way that, when com-
puting the second iteration of the map, it is placed
at the end of the flattened and stretched green rect-
angle appearing in Fig. 2(c).

Secondly, we perform a translation over the
whole set, as depicted in Fig. 2(c), lifting up the
whole thin rectangle and moving it to the left,
so that it lies slightly above the x-axis and runs
through the y-axis. This affine transformation can
be written as

H2(x, y) = (x, y) +
(
−1

5
,
1
8

)
. (2)

Now comes the most difficult part, which is the
folding shown in Figs. 2(d) and 2(e). We perform it
separately in two steps, one related to the red set,
and another for the blue one. Firstly, we apply a
translation T (a) to the red rectangle appearing in
Fig. 2(d) to place it at the origin, where a represents
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the vector along which the translation is carried out.
Then, we apply the counterclockwise rotation R(θ)
by an angle θ = π radians to the rectangle. Finally,
we perform one more translation T (b) of the rectan-
gle by means of the vector b, so that it lies symmet-
rical to the other light red rectangle [see Fig. 2(e)]
with respect to the line y = 1/2. These operations
can be written as

T (b)R(θ)T (a)x

=

(
cos θ −sin θ

sin θ cos θ

)(
x + ax

y + ay

)
+

(
bx

by

)
, (3)

where the vector parameters a = (−13/5,−1/4)
and b = (2/5, 3/4) have been chosen, in accor-
dance with previous parameter values appearing in
the transformation H1. The whole transformation
is shown in Fig. 3. Then, we proceed with the blue
region, which is more complicated than the red,
since it corresponds to the nonlinear folding. We
start by applying a translation T (c) to the blue rect-
angle shown in Fig. 4(a) along the direction defined
by the vector c. Then, we project the rectangle on
the y-axis by means of the operator Πy, which cor-
responds to a projector defined as

Πy =

(
0 0

0 1

)
. (4)

Such projection is shown in Fig. 4(b). Finally,
we have to perform a rotation R(θ) of an angle θ
depending on the position on the x-axis, so that the
thin vertical yellow strip appearing in Figs. 4(b)
and 4(c) does not rotate, the green vertical strip
rotates π/2 radians and the red one rotates π radi-
ans. This can be achieved by a linear dependence
between the angle and the x coordinate in the
form θ(x) = πx. With this linear dependence of

(a)

(b)

(c)

Fig. 3. (a) First step associated to the folding of the red
region in Fig. 2(e), consisting in a translation. (b) A rotation
of π radians. (c) A translation placing the red rectangle sym-
metrical to the other clearer red rectangle with respect to the
axis y = 1/2.

the angle with the coordinate x, the rotation
R(θ(x)) becomes nonlinear. Finally, and as shown
in Fig. 3(d), we perform the translation T−1(c)
to place the folded part back in its original
place. In summary, the whole transformation is
T−1(c)R(θ(T (c)x))ΠyT (c)x and, in matrix form, it
explicitly reads(

cos π(x + cx) −sin π(x + cx)

sin π(x + cx) cos π(x + cx)

)(
0 0

0 1

)(
x + cx

y + cy

)
−
(

cx

cy

)
, (5)

where c = (−1,−1/2), as shown in Fig. 3(a). The map that performs all these algebraic operations can be
written as

H3(x, y) =




(x, y) for x ≤ 1,(
y − 1

2

)
(−sin(π(x − 1)), cos(π(x − 1))) +

(
1,

1
2

)
for 1 < x < 2,

−
(

(x, y) −
(

13
5

,
1
4

))
+
(

2
5
,
3
4

)
for x ≥ 2.

(6)
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(a) (b)

(c) (d)

Fig. 4. (a) A translation of the blue region in Fig. 2(e), required to achieve the folding. (b) A projection of the translated
blue rectangle. (c) A nonlinear rotation generating the curvature of the folding. (d) A translation to place the folded region
in its right place.

(a) (b)

(c) (d)

Fig. 5. (a) The first iteration of the unit square under the piecewise horseshoe map H(Q) is shown in red and blue. (b) The
second iteration H2(Q). (c) The third iteration H3(Q). (d) A superposition of (a)–(c). The green vertical strips in (a)–(c)
represent the preimages of the red rectangles, mathematically expressed as H−n(Hn(Q) ∩ Q), for n = 1, 2, 3, respectively.
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Finally, for aesthetic purposes, to keep the
shape of the regions in the negative part of the x-
axis unaltered, we perform a contraction of the same
size as the one performed in the first contraction in
the y-axis, but now for negative values of the x-axis.
Therefore, this fourth transformation reads

H4(x, y) =



(x

4
, y
)

for x < 0,

(x, y) for x ≥ 0.
(7)

The horseshoe map is simply the composition of
these four transformations H = H4 ◦H3 ◦H2 ◦H1.
We recall that this map H is continuous and one-
to-one, but not differentiable, since H3 is not dif-
ferentiable at the points (1, y) and (2, y), which are
the points delimiting the folded rectangle. This lack
of smoothness contrasts with the original horseshoe
conceived by Smale [1967]. In Fig. 5, we take the
unit square and iterate it under the map H, showing
its successive iterations. Even though the equations
of the map [Eqs. (1) and (6)] look cumbersome, their
interpretation in terms of elementary linear trans-
formations and their numerical programming are
rather simple. This fact has the advantage of allow-
ing us to develop more sophisticated horseshoes in
the following sections.

As we have designed it, the map contracts the
area of the original unit square, since the contrac-
tion defined in H1 is more pronounced than the
stretching appearing in the same transformation.
Moreover, the folding appearing in Fig. 4 also con-
tracts the area. Nevertheless, the design of a similar
map preserving the area of the unit square can be
done by redefining the relation between the stretch-
ing and the contraction appearing in Eq. (1). The
map exhibits transient chaos. All the trajectories
except for the chaotic saddle, a set of zero Lesbesgue
measures, end in a stable fixed point x∗ = (−3/20,
5/20) placed out of the unit square Q= [0, 1]× [0, 1].
Such invariant set is computed in Sec. 4.

3. Horseshoes with More Than
One Folding

Following the same recipe, we can construct more
sophisticated schemes with an arbitrary number of
foldings. For instance, a double horseshoe has been
proposed to explain the fractal basin boundaries
separating two attractors [McDonald et al., 1985;
Aguirre et al., 2009]. This situation, also associated
with transient chaotic dynamics, can be reproduced

following the same procedure used in the previ-
ous section. A possible map capable of representing
fractal basin boundaries results from the composi-
tion of the four following piecewise maps

G1(x, y) =




(
x,

y

5

)
for x < 0,

(
27
5x

,
y

5

)
for 0 ≤ x ≤ 1,

(
x,

y

5

)
+
(

22
5

, 0
)

for x > 1,

(8)

G2(x, y) = (x, y) +
(
−1

5
,

1
10

)
, (9)

G3(x, y)

=




(x, y) for x ≤ 1,(
y − 7

20

)
(−sin(π(x − 1)), cos(π(x − 1)))

+
(

1,
7
20

)
for 1 < x ≤ 2,

−
(

(x, y) −
(

5
2
,
1
5

))
+
(

1
2
,

5
10

)

for 2 < x ≤ 3,(
y − 7

20

)
(sin(π(x − 3)), cos(π(x − 3)))

+
(

0,
13
20

)
for 3 < x ≤ 4,

(
x − 4, y − 6

10

)
for x > 4,

(10)

G4(x, y) =




(x

5
, y
)

for x < 0, y <
7
20

,

(
x − 1
5 + 1

, y

)
for x > 1, y >

13
20

,

(x, y) else.

(11)

We represent the iterations of the unit square
under the map G = G4 ◦ G3 ◦ G2 ◦ G1 in Fig. 6.
Two new elementary transformations appear in G3,

1830039-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

11
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 9, 2018 11:4 WSPC/S0218-1274 1830039

Computing Complex Horseshoes by Means of Piecewise Maps

(a) (b)

Fig. 6. (a) The first iteration of the unit square under the two-fold horseshoe map G(Q) is shown in red and blue. The
preimages of the red rectangles are shown in green. (b) The second iteration under the same map G2(Q).

which has an additional clockwise rotation for the
new blue folding and also one more translation for
the upper red rectangle appearing in Fig. 6(a). Now
there are two stable fixed points out of the unit
square, one for positive values of x in the upper part,
and another for negative values of x, in the lower
part. As we show in the next section, the stable
manifold of a saddle fixed point in the unit square
separates the basin boundaries of these two attrac-
tors, whose boundary is fractal.

We note that, for a horseshoe with a single
folding, the number of attractors outside Q is one,
while in this case there are two. In fact, the same
holds if the number of foldings is even, while there is
only one attractor if the number of foldings is odd.
Therefore, the coexistence of more than two attrac-
tors requires more than one folding horseshoe.

4. Applications

Since chaos is related to the existence of horseshoes,
the practical use of these piecewise maps is to inves-
tigate properties of chaotic dynamical systems. In
the following lines we introduce several applications
of these horseshoe maps, to illustrate how they can
be used with different purposes. After examining
two well-known examples, and as a completely new
feature, we show that a three-fold horseshoe can
give rise to basin boundaries exhibiting the so-called
Wada property [Yoneyama, 1917]. Given the fact
that homoclinic tangles give rise to infinitely many
successive foldings, this fact suggests why the Wada
property appears so frequently in nonlinear mul-
tistable dynamical systems and dispersive systems

with several escapes [Aguirre et al., 2009; Vander-
meer, 2004; Portela et al., 2007; Toroczkai et al.,
1997; Daza et al., 2017; Seoane & Sanjuán, 2012].
Finally, we show how one-dimensional unimodal or
multimodal maps can be in general computed from
horseshoes with one or more foldings, which can
simplify enormously the manipulation of a dynam-
ical system.

4.1. Basins of attraction

As shown in the previous section, the scheme
proposed in [McDonald et al., 1985] to demon-
strate that horseshoes are responsible for the fractal
nature of the boundary of the basins of attraction
separating coexisting attractors, can be directly
tested using these maps. We recall that a basin
of attraction is the set of all the points that end
in a particular attractor. In Fig. 7(a), we repre-
sent the basins of attraction of the two attrac-
tors x∗

1 = (−0.05, 0.125) and x∗
2 = (1.05, 0.875)

that lie outside the unit square given by the map
G described in the previous section. Their bound-
ary consists of vertical lines, associated to the sta-
ble manifold of a saddle fixed point in the unit
square Q. Successive magnifications of the basins
are shown in Figs. 7(b)–7(d), which clearly suggest
their fractal nature.

4.2. Chaotic saddle

Another important invariant set associated to tran-
sient chaotic dynamics is the nonattracting invari-
ant set, also called the chaotic saddle. This set is
formed by all the points in the unit square that
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(a) (b)

(c) (d)

Fig. 7. (a) Basins of attraction of the two attractors x∗
1 = (−0.05, 0.125) and x∗

2 = (1.05, 0.875) of the two-fold horseshoe map
G. (b)–(d) Three blow-ups of the basins showing their fractality. Note the symmetry of the basins on both sides of x = 1/2,
which is due to the symmetry of the stable manifold.

Fig. 8. An approximation of the chaotic saddle of H using
the Sprinkler Algorithm with n0 = 8, starting with a planar
grid of resolution 60 000 × 60 000. This invariant set consists
of the direct product of two Cantor sets.

do not escape to the attractor by forward or back-
ward iteration. It can be computed by means of
the Sprinkler Algorithm [Hsu et al., 1998], as shown
in Fig. 8. If we look at Fig. 5(d), the chaotic sad-
dle can be iteratively computed as the intersection
Hn(Q)∩H−n(Hn(Q)∩Q) when n tends to infinity
and with Q the unit square. For instance, the first
iteration is the intersection of the green vertical and
red horizontal strips in Fig. 5(a), which consists of
four squares.

4.3. Basins of Wada

Even though it is not possible to have more than two
attractors outside the unit square with a horseshoe
map, we can create systems with more than two
escapes from the unit square and study the escape
basins. In fact, using a minimum number of three
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(a) (b)

Fig. 9. (a) The first iteration of the unit square by means of a three-fold horseshoe is shown in red, blue, yellow and magenta.
The preimages of the red rectangles are shown in green. (b) The escape basins, considering different escapes in each of the
three foldings, with their corresponding colors. These escape basins possess the Wada property.

foldings, it is possible to create an escape basin with
the Wada property. Three basins possess this prop-
erty if every point of the boundary of a particu-
lar basin belongs to the boundary of the remaining
two basins [Kennedy & Yorke, 1991; Nusse & Yorke,
1996].

A three-fold horseshoe map is shown in
Fig. 9(a). The equations that describe this map
are a straightforward extension of the equations
shown in the previous section and we omit them
because they are quite long. The escape basins can
be defined, relating a different escape to each of the
three foldings appearing in Fig. 9(a). The associated
basin appearing in Fig. 9(b) is a basin of Wada, as
can be demonstrated using recent numerical tech-
niques [Daza et al., 2015, 2018].

4.4. Multimodal 1D maps

We conclude the present work by demonstrating
that a horseshoe with multiple foldings yields a
multimodal map, by simply projecting its bound-
ary along the stretching direction. The relevance
of this correspondence is that it allows to reduce
the dimensionality of a dynamical system, which
simplifies enormously its study. To the best of our
knowledge, this fact appears sometimes in the lit-
erature, but without a detailed explanation of how
these two maps are connected [Nicolis, 1995]. As
shown in Fig. 10(a), if we care about the lower
edge I = [0, 1] of the unit square Q only, we see

(a) (b)

Fig. 10. (a) The iteration of the lower side of the unit square
by means of the piecewise horseshoe map. (b) The projected
map on the x-axis, which yields a unimodal map, very similar
to the logistic map.

that after one iteration H(I) this set corresponds
to the external boundary of the horseshoe. If we
now project such external boundary on the x-axis
by means of a projector Πx, we obtain a unimodal
map. In other words, the restriction of the horseshoe
to the stretching axis (the x-axis in our examples)
yields a unimodal one-dimensional map. As shown
in Fig. 10(b), this fact is immediately verified using
our piecewise maps. The present argument can be
extended in a very simple way to show that a horse-
shoe with several foldings can be related to a mul-
timodal map.

5. Conclusions and Discussion

We have provided a systematic procedure to com-
pute complex folding structures. This is achieved
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by using two-dimensional piecewise maps, which
accomplish all the required elementary transforma-
tions, such as translations, projections, scalings and
rotations, both linear and nonlinear. These mathe-
matical functions can be useful to investigate cen-
tral properties of chaotic dynamical systems and,
from the point of view of computational running
times, they are very affordable.

A particularly interesting application has been
presented, which consists, perhaps, in the concep-
tually simplest two-dimensional dynamical system
that presents the Wada property. As we have shown,
more than two escape basins can share their whole
boundary if horseshoes with more than two fold-
ings are present in the system. In particular, a fold-
ing structure with three foldings is sufficient for a
dynamical system to display such property.

Another application of these maps is the illus-
tration of how multimodal maps can be derived
from horseshoe maps with several foldings. Despite
its simplicity, this equivalence is of paramount
importance. Methods to obtain a Smale horseshoe
in an arbitrary low-dimensional chaotic dynamical
system have been developed recently [Li & Yang,
2010; Li et al., 2012]. Therefore, this correspon-
dence allows us to reduce the dimensionality of the
dynamical system even further, and also to apply
our vast knowledge on unidimensional maps [May,
1976; Sharkovsky et al., 2013; Collet & Eckmann,
1980] to a wide spectrum of dynamical systems. As
it has been recently shown, this capacity to reduce
the dimensionality of the dynamical system can also
entail a considerable simplification of some control
methods, as for example the partial control method
[Capeáns et al., 2017].
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