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Abstract. The stochastic resonance phenomenon in overdamped systems with fractional power nonlinearity
is thoroughly investigated. The first kind of nonlinearity is a general fractional power function. The second
kind of nonlinearity is a fractional power function with deflection. For the first case, the response is
clearly divergent for some fractional exponent values. The curve of the spectral amplification factor versus
the fractional exponent presents some discrete regions. For the second case, the response will not be
divergent for any fractional exponent value. The spectral amplification factor decreases with the increase
in the fractional exponent. For both cases, the nonlinearity is the necessary ingredient to induce stochastic
resonance. However, it is not the sufficient cause to amplify the weak signal. On the one hand, the noise
cannot induce stochastic resonance in the corresponding linear system. On the other hand, the spectral
amplification factor of the nonlinear system is lower than that of the corresponding linear system. Through
the analysis carried out in this paper, we are able to find that the system with fractional deflection
nonlinearity is a better stochastic resonance system, especially when an appropriate exponent value is
chosen. The results in this paper might have a certain reference value for signal processing problems in
relation with the stochastic resonance method.

1 Introduction

Stochastic resonance (SR) is a well-known nonlinear phenomenon in a wide range of science and engineering fields.
When SR occurs, the weak low-frequency signal in the output can be amplified by an appropriate amount of noise. It
was first put forward by Benzi et al. [1,2] in the investigation of the ice ages. Since then, it has been investigated in many
different systems, like the ring laser [3,4], biological systems [5–7], neuronal networks [8–10], image processing [11,12],
signal processing [13,14], energy harvesting [15–17], fault diagnosis [18–20], etc. In the early stage of SR investigations,
the systems considered were basically nonlinear models. With the development of the theory, researchers found that
SR not only occurs in nonlinear systems, but it can also occur in some linear systems, when some coupling elements
exist in the system [21–23]. Moreover, besides the traditional SR occurs at the excitation frequency, it may also occur
at some superharmonic or subharmonic frequencies in the nonlinear response regime [24–27].

Although there are many references on SR, to our knowledge, there is little work on SR in systems with a fractional
power nonlinearity. However, the nonlinearity of the system may be in a fractional power function form. Some works
discussing the dynamical properties of this kind of systems are found in refs. [28–35]. Hence, in this paper, we will
study overdamped systems with typical fractional power nonlinearity.
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The first kind of system is an overdamped system with a general factional power function,

dx(t)
dt

− ax(t) + bxα(t) = f cos(ωt) + ξ(t), (1)

and we will use the term OGF system to refer to it all throughout this paper. In eq. (1), the parameters satisfy the
conditions a > 0, b > 0 and α > 1. The term f cos(ωt) is a weak low-frequency excitation. ξ(t) is a Gaussian white
noise with zero mean value and noise intensity σ, i.e.,

〈ξ(t)〉 = 0,

〈ξ(t)ξ(t′)〉 = 2σδ(t − t′). (2)

In eq. (1), the nonlinearity appears as a general fractional power function. Specifically, the exponent α can be an integer
or a fractional number. The unstable equilibrium of system (1) is x0 = 0. For some cases, the stable equilibrium of the
system is x1 = α−1

√
a
b . For other cases, the stable equilibria of the system are x1,2 = ± α−1

√
a
b . Specifically, the shape

of the potential function depends on the value of the fractional exponent.
The second kind of system is an overdamped system with fractional deflection nonlinearity,

dx(t)
dt

− ax(t) + bx(t)|x(t)|α−1 = f cos(ωt) + ξ(t), (3)

and we will refer to the ODF system in this paper. In eq. (3), the parameters still satisfy the conditions a > 0, b > 0
and α > 1. The exponent α is also an integer or a fractional number as that in system (1). f cos(ωt) and ξ(t) have the
same properties as in eq. (1). The unstable equilibrium of system (3) is x0 = 0 and two stable equilibria of the system
are given by x1,2 = ± α−1

√
a
b . In other words, the ODF system is always bistable. The shape of the potential function

is independent of the fractional exponent α.
The outline of the paper is organized as follows. In sect. 2, we investigate the SR phenomenon in the OGF system.

In sect. 3, we investigate the SR phenomenon in the ODF system. Both in sects. 2 and 3, effects of the noise, the
fractional exponent, the nonlinearity on SR are discussed in detail. Finally, the main results of this paper are described
in sect. 4.

2 The SR phenomenon in the OGF system

There are some different indexes to measure the SR degree. In this paper, we use the spectral amplification factor as
the index to evaluate the SR. The spectral amplification factor [25], labelled by η, is defined by

η =
(

x̄

f

)2

, (4)

where x̄ is the mean value of the response amplitude at the excitation frequency ω. In our work, we use 1000 different
noise realizations to simulate the stochastic process. For each value of the response amplitude, Q, at the frequency ω,
is calculated by

Q(ω) =
√

Q2
sin(ω) + Q2

cos(ω), (5)

where Qsin(ω) = 2
rT

∫ rT

0
x(t) sin(ωt)dt, Qcos(ω) = 2

rT

∫ rT

0
x(t) cos(ωt)dt. The parameter r is a positive and integer

number, which should be large enough. In this paper, we let r = 100. The period of the low-frequency excitation is T .

2.1 The noise induced SR

In fig. 1, under different values of the fractional exponent and the signal amplitude, some curves of the spectrum
amplification versus the noise intensity are given. In fig. 1(a), α = 1.4, when f = 0.05 and f = 0.1, there is a slight
SR phenomenon induced by the noise intensity. When f = 0.3, the spectrum amplification factor decreases with the
increase of the noise intensity. In other words, there is no SR phenomenon for stronger low-frequency signal. In figs. 1(b)
and (f), α = 2 and α = 4, respectively. In these two cases, the response of the system will be rapidly divergent with
the increase of the noise intensity. Moreover, in all cases in figs. 1(a), (b), (c), (e), (f), (g), the potential function has
only one stable equilibrium and one unstable equilibrium. It makes the response of the system to be divergent easily.
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Fig. 1. The spectral amplification factor of the OGF system versus the noise intensity under different values of α and f . The
simulation parameters are a = 1, b = 1 and ω = 0.1.

In fig. 1(d), α = 3, we have a typical bistable system. The curve of the spectrum amplification factor in fig. 1(d) is
the most commonly SR curve. There are many references describing the SR phenomenon for this kind of system. In
fig. 1(h), α = 5, the system is a quintic oscillator with a bistable potential. The spectrum amplification factor versus
the noise intensity presents the typical SR phenomenon in fig. 1(h). However, when we compare fig. 1(f) with fig. 1(d),
we find that the system will be divergent in a much easier way for a stronger noise intensity. Further, the maximum of
the spectrum amplification factor in fig. 1(h) is smaller than that in fig. 1(f). Moreover, in fig. 1, for smaller values of
f , the spectrum amplification factor may have a larger maximum. As a result of fig. 1, the traditional bistable system
is an excellent system to induce an SR phenomenon.

To indicate the SR phenomenon much more clearly, in fig. 2, we give the curves of the spectrum amplification
factor versus the noise intensity under different values of α and ω. The results in fig. 2 are similar to those in fig. 1.
Moreover, for smaller values of ω, the spectrum amplification factor has a much larger maximum.
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Fig. 2. The spectral amplification factor of the OGF system versus the noise intensity under different values of α and ω. The
simulation parameters are a = 1, b = 1 and f = 0.15.

2.2 Effect of the fractional exponent α

In fig. 3, under different values of σ and f , the curves of the spectrum amplification factor versus the fractional
exponent α are plotted. A conspicuous property is the discontinuity on the curve. Specifically, the output of the
system will be divergent in some discrete regions. In most of other regions, the spectrum amplification factor decreases
with the increase of the noise intensity in each of these regions. When the fractional exponent α approaches to 1, the
spectrum amplification has a large value. Moreover, for smaller values of σ, the spectrum amplification factor also has
a larger value.

In fig. 4, under different values of σ and ω, the spectrum amplification factor η versus the fractional exponent α
are given. The results in fig. 4 are similar to that in fig. 3. Besides the discrete discontinuity regions on the curves, the
spectrum amplification factor has larger values for the smaller values of σ and ω.
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Fig. 3. The spectral amplification factor of the OGF system versus the power order under different values of σ and f . The
simulation parameters are a = 1, b = 1 and ω = 0.1.

2.3 Effect of the nonlinearity

To investigate the effect of the nonlinearity, we plot in fig. 5 the spectral amplification factor versus the noise intensity
under small values of the exponent α. When α = 1, the system is a stochastic linear system and there is no coupling
element in the system. According to the stochastic dynamical theory, the spectrum amplification factor is not a
nonlinear function of the noise intensity. Hence, there is no SR phenomenon when α = 1. When the nonlinear term
appears, i.e., α > 1, even though α = 1.05, a slight SR phenomenon occurs. With the increase of α, the SR phenomenon
becomes more apparent. Hence, the nonlinearity is the necessary and key factor to induce SR. Further, we find that
the peak value of the SR curve decreases with the increase of α. Hence, in fig. 5, the nonlinearity is not the sufficient
factor to amplify the weak low-frequency signal.
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Fig. 4. The spectral amplification factor of the OGF system versus the power order under different values of σ and ω. The
simulation parameters are a = 1, b = 1 and f = 0.1.

3 The SR phenomenon in the ODF system

Now, we study the SR phenomenon for the other kind of system, that is, the ODF system.

3.1 The noise induced SR

The spectral amplification factor versus the noise intensity in the ODF system is given in fig. 6. Very different from
the η-σ curves in fig. 1, the response is not divergent in fig. 6 for any value of α. As a result, the ODF system is prior
to the OGF system when it is considered as a SR system. In figs. 6(a) and (b), when α = 1.4 and α = 2, respectively,
the SR disappears or turns unconspicuous for larger values of f , such as f = 0.3. In fig. 6, we also see that the spectral
amplification factor may have a larger value for smaller values of f . In other words, the weaker signal is easy to be
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Fig. 5. The spectral amplification factor of the OGF system versus the noise intensity under different small values of α. The
simulation parameters are a = 1, b = 1, f = 0.1 and ω = 0.2.

amplified. Moreover, when α turns from 1.4 to 5, the spectral amplification factor reduces gradually. We will research
on the effect of the fractional exponent on the spectral amplification factor later.

The SR is displayed in fig. 7, and there is no divergent phenomenon for different values of α. For lower signal
frequencies, the response will achieve a higher resonance peak. It is a common property of the SR phenomenon. With
the increase of α, the spectral amplification factor will decrease. It is the same as what happens in fig. 6. If we compare
fig. 7 with fig. 2, one can see that the ODF system has a better performance than the OGF system, once again.

3.2 Effect of the fractional exponent α

In this subsection, we give the curves of η-α under some different simulations parameters, to make clear the effect of
the fractional exponent α on the spectral amplification factor η further.

The dependence of the spectral amplification factor η on the fractional exponent α under different values of σ and
f is shown in fig. 8. Differently from what appears in fig. 4, fig. 8 shows that the fractional exponent cannot induce
divergence in the ODF system. It also reveals that the spectral amplification factor closely depends on the fractional
exponent α. Specifically, the spectral amplification factor will decrease with the increase of the fractional exponent.
Under different values of f , this fact is always valid.

In fig. 9, under different values of σ and ω, the spectral amplification factor η versus the fractional exponent α is
given. In this figure, we find that the spectral amplification factor may achieve a larger value for weak signals with
lower frequency. Moreover, for a weaker noise excitation, the spectral amplification factor may have a larger value.

As a conclusion of this subsection, we find that the ODF system has a better performance when SR occurs. This
is mainly due to the fact that the OGF system induces easily a divergent response. It can also be explained from their
potential functions. For the OGF system, the form of its potential function depends on the fractional exponent. For
some cases, the potential function does not have a large enough attraction region. It leads to the response to be easy to
be divergent for these cases. For the ODF system, the form of its potential is independent of the fractional exponent.
Specifically, the potential function always has a bistable form. The attraction region for this case is large enough. The
response is not easy to be divergent for this kind of potential. Consequently, it results that the ODF system has a
better SR performance than the OGF system.
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Fig. 6. The spectral amplification factor of the ODF system versus the noise intensity under different values of α and f . The
simulation parameters are a = 1, b = 1 and ω = 0.1.

3.3 Effect of the nonlinearity

Usually, the SR is investigated in the nonlinear system as we mentioned in the introduction. Hence, it is important
to study the effect of the nonlinearity on the SR phenomenon. For the case α = 1, the ODF system degenerates to
a linear system. When α approaches 1, the system is approximate to a linear system. In fig. 10, when the fractional
exponent α is very close to 1, such as α = 1, 1.05, 1.1, there is no apparent SR phenomenon. With the increase
of α, such as α = 1.2, 1.25, 1.3, the SR phenomenon is clearly observed. Hence, the nonlinearity is the necessary
factor for the SR to occur. Another important fact is that the nonlinearity cannot amplify the weak signal. This is
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Fig. 7. The spectral amplification factor of the ODF system versus the noise intensity under different values of α and ω. The
simulation parameters are a = 1, b = 1 and f = 0.15.

because the spectral amplification factor will decrease with the increase of the fractional exponent α. In other words,
the spectral amplification factor obtained from the linear system is higher than that obtained from the nonlinear
system in fig. 10. Hence, in fig. 10, we can say that the nonlinearity is the necessary ingredient to induce the SR
phenomenon but not the sufficient condition to amplify the weak signal. The fact shown in fig. 10 is the same as that
in fig. 5.
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Fig. 8. The spectral amplification factor of the ODF system versus the power order under different values of σ and f . The
simulation parameters are a = 1, b = 1 and ω = 0.1.

4 Conclusions

The classic SR phenomenon in the OGF and the ODF systems is investigated in detail. The OGF system is an
overdamped system with a general fractional power nonlinearity. The ODF system is an overdamped system with a
fractional deflection nonlinearity.

In the OGF system, the response of the system closely depends on the fractional exponent value. The response
will be divergent for some regions of the fractional exponent values. In other words, the SR phenomenon may occur
only in some discrete regions when the fractional exponent value is treated as a controllable variable. Moreover, the
nonlinearity of the OGF system is the necessary factor to induce the SR phenomenon. However, it is not the sufficient
factor to amplify the weak low-frequency signal. In general, the spectral amplification factor of the OGF system is
lower than that of the corresponding linear system.
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Fig. 9. The spectral amplification factor of the ODF system versus the power order under different values of σ and ω. The
simulation parameters are a = 1, b = 1 and f = 0.15.

In the ODF system, the response of the system also closely depends on the fractional exponent. On the one hand,
the response will not be divergent for any value of the fractional exponent. On the other hand, the spectral amplification
factor versus the fractional exponent presents a decreasing function. Moreover, the nonlinearity is a necessary factor
to induce SR, but it is not the sufficient factor to amplify the weak low-frequency signal. On this point, it is the same
as that of the OGF system.

Through the analysis of the SR in nonlinear systems with different fractional power nonlinearities, we have found
that the ODF system has a good performance. Further, when we chose an appropriate fractional exponent, we can
have a better SR output than in the classic bistable system. The spectral amplification factor can be improved by it.
We believe that our results can be useful in the field of signal processing. For example, when we use the ODF system
to extract a weak signal in a noisy background, the extraction efficiency might be improved excellently.



Page 12 of 13 Eur. Phys. J. Plus (2017) 132: 432

0 0.1 0.2 0.3 0.4 0.5 0.6
5

10

15

20

25

30

35





 

 

=1 =1.05 =1.1 =1.2 =1.25 =1.3

Fig. 10. The spectral amplification factor of the ODF system versus the noise intensity under small values of α. The simulation
parameters are a = 1, b = 1, f = 0.1 and ω = 0.2.
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