
PHYSICAL REVIEW E 95, 032205 (2017)

Global relativistic effects in chaotic scattering
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The phenomenon of chaotic scattering is very relevant in different fields of science and engineering. It has been
mainly studied in the context of Newtonian mechanics, where the velocities of the particles are low in comparison
with the speed of light. Here, we analyze global properties such as the escape time distribution and the decay
law of the Hénon-Heiles system in the context of special relativity. Our results show that the average escape time
decreases with increasing values of the relativistic factor β. As a matter of fact, we have found a crossover point
for which the KAM islands in the phase space are destroyed when β � 0.4. On the other hand, the study of the
survival probability of particles in the scattering region shows an algebraic decay for values of β � 0.4, and this
law becomes exponential for β > 0.4. Surprisingly, a scaling law between the exponent of the decay law and the
β factor is uncovered where a quadratic fitting between them is found. The results of our numerical simulations
agree faithfully with our qualitative arguments. We expect this work to be useful for a better understanding of
both chaotic and relativistic systems.
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I. INTRODUCTION

Chaotic scattering in open Hamiltonian systems has been a
broad area of study in nonlinear dynamics, with applications
in numerous fields in physics (see Refs. [1] and [2]). This topic
is essentially defined by a scattering region where there are
interactions between incident particles and a potential. Outside
this region the influence of the potential on the particles is
negligible and the motions of the incident particles are uniform.
For many applications of physical interest, the equations of
motion of the test particles are nonlinear and the resultant
dynamics is chaotic in the scattering region. Therefore, slightly
similar initial conditions may describe completely different
trajectories. Since the system is open, this region possesses
exits through which the particles may enter or escape. Quite
often, particles starting in the scattering region bounce back
and forth for a finite time before escaping. In this sense, chaotic
scattering could be presented as a physical manifestation of
transient chaos [3,4].

Using the Newtonian approximation for modeling the
dynamics of the system is the most widely accepted convention
in physics and engineering applications when the speed of
objects is low compared to the speed of light [5]. Nevertheless,
if the dynamics of the system is really sensitive to the
initial conditions, the trajectories predicted by the Newtonian
scheme rapidly disagree with the ones described by the special
relativity theory (see Refs. [6–9]). Recently, there have been
some results [10] pointing out that the global properties of the
dynamical systems, such as the dimension of the nonattracting
chaotic invariant set, are more robust and the Newtonian
approximation actually provides accurate enough results for
them in slow chaotic scattering motion. The goal of this paper
is to show that there are relevant global properties of chaotic
scattering systems that indeed do depend on the effect of
the Lorentz transformations and we may consider the special
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relativity scheme when we want to describe them in a realistic
manner, even for low velocities. Specifically, we focus our
study on both the average escape times and the decay law of the
particles from the scattering region, which are quite important
global properties in scattering systems. The authors of the
present work have shown the effect of external perturbations
such as noise and dissipation in some Hamiltonian systems
(see Refs. [1] and [11]). However, the consideration of the
relativistic framework to the system dynamics cannot be con-
sidered an external perturbation like the noise or dissipation,
although the global properties of the system also change.

Henceforth, we refer to any effect where the Lorentz
transformations have been considered as relativistic. Likewise,
we say that any property or object is nonrelativistic or
Newtonian when we take into consideration not the Lorentz
transformations but the Galilean ones.

This paper is organized as follows. In Sec. II, we describe
our prototype model, the relativistic Hénon-Heiles system. The
effects of the Lorentz transformation on the average escape
time of the particles and their decay law are reported in
Secs. III and IV. In Sec. V, we give a heuristic reasoning based
on energetic considerations to explain the results obtained in
previous sections. In Sec. VI, we characterize the decay law
of relativistic particles. A discussion and the main conclusions
of this paper are presented in Sec. VII.

II. MODEL DESCRIPTION

We focus our attention here on the global effects of
relativistic corrections in a paradigmatic chaotic scatter-
ing system, such as the Hénon-Heiles Hamiltonian. The
two-dimensional potential of the Hénon-Heiles system is
defined by

V (x,y) = 1

2
k(x2 + y2) + λ

(
x2y − 1

3
y3

)
. (1)

In 1964 Hénon and Heiles proposed considering this
potential in the proper system of units where k = λ = 1 (see
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FIG. 1. Isopotential curves for the Hénon-Heiles potential: they
are closed for energies below the nonrelativistic threshold energy
escape Ee = 1/6. Threet exits for energy values above Ee = 1/6 are
shown.

Ref. [12]). Its isopotential curves are shown in Fig. 1. Due to the
triangular symmetry of the system, the exits are separated by an
angle of 2π/3 radians. For the sake of clarity, we call the upper
exit (y → +∞) exit 1, the left one (y → −∞,x → −∞) exit
2, and the right exit (y → −∞,x → +∞) exit 3.

We define the nonrelativistic total mechanical energy and
we call it the Newtonian energy, EN ; EN = T (p) + V (r),
where T is the kinetic energy of the particle, T = p2/2m,
p is its linear momentum, V (r) is the potential energy, and r is
its vector position. Depending on the value of the Newtonian
energy, the trajectory of any incident particle is trapped in the
scattering region (EN ∈ [0,1/6]) or eventually escapes from
it up to ∞ for EN > 1/6. Actually there are three regimes
of motion, depending on the initial value of the energy: (a)
closed nonhyperbolic, EN ∈ [0,1/6]; (b) open nonhyperbolic,
EN ∈ (1/6,2/9); and (c) open hyperbolic, EN ∈ [2/9, + ∞)
[13]. Within the first energy range, all the trajectories are
trapped and there is no exit by which any particle may escape.
There is a wide variety of possible motions in this energy
range, from periodic and quasiperiodic trajectories to chaotic
trajectories. However, in the range of EN ∈ (1/6,2/9) the
regime is open nonhyperbolic, the energy is high enough to
allow escapes from the scattering region, and KAM tori coexist
with chaotic saddles, which typically results in an algebraic
decay in the survival probability of a particle in the scattering
region. On the contrary, if EN ∈ [2/9, + ∞), the regime is
open hyperbolic and all the periodic trajectories are unstable,
therefore there is no KAM tori in the phase space.

If we consider the motion of a relativistic particle moving
in an external potential energy V(r), the Hamiltonian (i.e., the
total energy) is

H = E = mc2 + V (r) =
√

m2c4 + c2p2 + V (r), (2)

where m is the particle’s rest mass and c is the speed of light.
Then the Hamilton’s canonical equations are

ṗ = −∂H

∂r
= −∇V (r),

ṙ = v = ∂H

∂p
= p

mγ
, (3)

where the Lorentz factor γ is defined as

γ =
√

1 + p2

m2c2
= 1√

1 − v2

c2

. (4)

When γ = 1 the Newtonian equations of motion are
recovered from Eq. (3). That is the reason why the usual
convention is to consider the Newtonian scheme a good
approximation for slow motion, where γ ≈ 1. We define
β as the ratio v/c, where v is the modulus of the vector
velocity v. Then the Lorentz factor can be rewritten as
γ = 1√

1−β2
. Whereas γ ∈ [1, + ∞), the range of values for β

is [0,1]. However, γ and β express essentially the same thing:
how high the velocity of the object is compared to the speed of
light. Henceforth, we use β instead of γ to show our results,
for convenience.

Taking into consideration Eqs. (1) and (3), the relativistic
equations of motion of a scattering particle of unit rest mass
(m = 1) interacting with the Hénon-Heiles potential are

ẋ = p

γ
,

ẏ = q

γ
,

ṗ = −x − 2xy,

q̇ = −y − x2 + y2, (5)

where p and q are the two components of the linear momentum
p.

In the present work, we aim to isolate the effects of variation
of the Lorentz factor γ (or β as previously shown) from the rest
of the variables of the system such as, for instance, the initial
velocity of the particles and its energy. For this reason, we use
different systems of units so that γ is the only parameter in
the equations of motion [Eq. (5)] that may vary. Therefore,
we analyze the evolution of the properties of the system when
β varies, comparing these properties with the characteristics
of the nonrelativistic system. For this comparison, during
our numerical computations we choose the same value of
the initial velocity, v = 0.583, in different systems of units,
corresponding to a Newtonian energy EN = 0.17, that is, the
open nonhyperbolic regime, as described in Sec. II. In this
regime the Hénon-Heiles system exhibits the richest variety of
behaviors. As an example for the sake of clarity, we consider
an incident particle coming from ∞ to the scattering region.
Imagine that we measure the properties of the incident particle
in the Planck system of units. In this system, the speed of light
is c = 1c, that is, the variable speed is measured as a multiple
of the speed of light c instead of in m/s, for instance. Likewise,
in the Planck units, the mass is expressed as a multiple
of the Planck mass mP (which is mP ≈ 2.2 × 10−8 kg).
According to our measures, the resting mass of the particle
is the unit m = 1mP . Likewise, we measure its inner speed
as v = 0.583c. According to the Newtonian scheme, the
classical energy of the particle is EN = 1

2v2 ≈ 0.17EP , where
EP is the Planck energy, the unit for the energy in the
Planck system (EP ≈ 1.96 × 109 J). Now we consider another
incident particle with a different resting mass and velocity,
however, we choose the International System of Units (SI) to

032205-2



GLOBAL RELATIVISTIC EFFECTS IN CHAOTIC SCATTERING PHYSICAL REVIEW E 95, 032205 (2017)

0 0.2 0.4 0.6 0.8
1

β

100

200

300
T

e

FIG. 2. Average escape time T̄e of 10 000 particles inside the
scattering region with initial velocity v = 0.583. Initial conditions
are (x0,y0,ẋ0,ẏ0) = (0,0,v cos(ϕ),v sin(ϕ)), with shooting angle ϕ ∈
[0,2π ]. We use 500 values of β in our calculations. There is a linear
decrease in T̄e up to β ≈ 0.4. Indeed at β ≈ 0.4 there is a leap where
the linearly decreasing trend of T̄e changes abruptly.

measure its properties. In this case, we obtain that its resting
mass is again the unit, although now the rest mass is 1 kg,
m = 1 kg, and its velocity is v = 0.583 m/s. The speed of
light in SI is c ≈ 3 × 108 m/s. The initial Newtonian energy
of the particle is EN ≈ 0.17 J in SI, but now the initial velocity
is almost negligible compared to the speed of light, that is,
β = v/c = 0.583/3 × 108 ≈ 2 × 10−9. Therefore, from the
perspective of the equations of motion of both particles,
when we consider just the Galilean transformations, we can
conclude that the behavior of the particles will be the same
since V (x,y) of Eq. (1) is equal in both cases, as long
as the parameters k = λ = 1 in their respective system of
units. However, they are completely different when relativistic
corrections are considered because the Lorentz factor γ affects
the equations of motion by the variation of β, regardless of the
selected system of units. To summarize, the objective of our
numerical computations and analysis is to study the effect of
γ on the equations of motion, so the key point is to set the
speed of light c as the threshold value of the speed of particles,
regardless of the system of units we are considering.

III. NUMERICAL RESULTS ON THE ESCAPE TIME

In this section we study the discrepancies between the
relativistic and the nonrelativistic corrections when we analyze
the average escape time, T̄e, of the system, which is an
essential global property in chaotic scattering problems.
The escape time, Te, of an incident particle is defined as
the time it spends in the scattering region. For times above
Te, the particle travels to ∞ after having crossed one of the
three exit boundaries, which are extremely unstable trajectories
called Lyapunov orbits (see Ref. [14]). In the case of the
Hénon-Heiles system, the Lyapunov trajectories exist for
energies higher than Ee = 1/6. The higher the energy, the
shorter the escape times. When we consider a large number
of particles and we average their individual Te values, then
we obtain the global property T̄e, which is a unique and
characteristic property of the system. We represent in Fig. 2
the average escape time, T̄e, of 10 000 particles shot inside
the scattering region with an initial velocity v = 0.583. The
initial conditions are (x0,y0,ẋ0,ẏ0) = (0,0,v cos(ϕ),v sin(ϕ)),
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FIG. 3. Percentage of trapped particles in the scattering region:
�KAM, expressed as a decimal, at tmax, is directly proportional to the
Lebesgue measure of the KAM islands on the Poincaré surface of
the section. At β ≈ 0.4 there are just a few particles trapped in the
scattering region.

with shooting angle ϕ ∈ [0,2π ]. We use 500 values of β for
our calculations. The Newtonian average escape time in Fig. 2
is the first point in the graph, when β → 0. This value is
indeed the inner average escape time of the particles. As
a reminder, this is the time as seen by an observer who is
stationary with regard to the reference frame of the particle.
Then, if we average the measures of the inner escape time of
the 10 000 particles, we get the value of T̄e when β → 0. As
shown in Fig. 2, there is a clear influence of the Lorentz factor
variation on the average escape time T̄e. It is noteworthy that, in
the most general sense, we define scattering as the problem of
obtaining the relationship between an input variable taken from
outside the scattering region and an output variable, which
characterizes the final state of the system after interacting
with the scattering region (see Ref. [2]). However, starting
the numerical experiments within the scattering region is a
convention frequently used in the scientific literature (see,
for example, Refs. [13] and [15], [16], and [17]). The reason
behind this is to take advantage of the well-known topological
structure of the escape basins resulting from the Poincaré
surface of section (ẏ,y) for x(0) = 0. Therefore it is implicitly
assumed that the initial conditions chosen for the computations
may correspond to trajectories which come from outside the
scattering region, and after bouncing back and forth for a
certain time in the scattering region, they pass through x = 0
at a certain velocity (ẋ,ẏ). This is the precise instant when
the simulations start and the initial conditions are set as
(x = 0,y,ẋ,ẏ). According to Fig. 2, there is a relevant decrease
in T̄e up to β ≈ 0.4. Indeed at β ≈ 0.4 there is a leap where
the linearly decreasing trend of T̄e changes abruptly. This can
be explained when we highlight that at β ≈ 0.4 the KAM
islands are almost destroyed and there are just a few trajectories
trapped in the scattering region forever. In fact, as shown in
the literature (see Ref. [18]), KAM islands exhibit a certain
stickiness in the sense that their presence in the phase space
provokes longer transients inside the scattering region. In order
to confirm the destruction of the KAM island at β ≈ 0.4, we
analyze in Fig. 3 the percentage, expressed as a decimal, of
particles trapped in the scattering region at tmax. We call this
percentage φKAM and it is directly related to the presence of
KAM islands and its Lebesgue measure in the Poincaré surface
of the section.
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To calculate �KAM we have again considered 10 000
particles inside the scattering region with initial conditions
(x0,y0,ẋ0,ẏ0) = (0,0,0.583 cos(ϕ),0.583 sin(ϕ)) and shooting
angle ϕ ∈ [0,2π ]. Then we compare the number of particles
remaining in the scattering region after a long transient, tmax,
with the total number of initially shot particles, obtaining
the quantity �KAM for a certain value of β. Finally, we take
different values of β and we represent �KAM vs β to get Fig. 3.
The results point out that, even for low velocities (β < 0.2),
the number of trapped particles decreases as β increases. When
β ≈ 0.4 there are almost no particles trapped in the scattering
region, which is a direct proof of the destruction of the KAM
islands. It is noteworthy that the shapes of both curves, T̄e(β)
and �KAM(β), as shown in Figs. 2 and 3, are very similar, which
expresses the influence of the KAM destruction mechanism
over the global properties of the system.

In Sec. V we discuss the reasons behind the trend of the
average escape time T̄e of the system under the variation of β

in Fig. 2.

IV. NUMERICAL RESULTS ON THE DECAY LAW

In this section, we report the numerical results that we
have obtained from the analysis of another fundamental piece
of any chaotic scattering system, the time delay statistics
P (t) of the system (see Ref. [1]), when we consider the
Lorentz corrections. Suppose that we pick many different
initial conditions at random in some interval of the domain.
Then we examine the resulting trajectory for each value and
determine the time t that its trajectory spends in the scattering
region. The fraction of trajectories with a time delay between
t and t + dt is P (t)dt . For open nonhyperbolic dynamics with
bounding KAM surfaces in the scattering region, one finds that
for large t the time delay statistics, P (t), decays algebraically
as follows:

P (t) ∼ t−α. (6)

An algebraic decay law like that described in Eq. (6) is also
found in higher dimensional Hamiltonian systems when the
phase space is partially filled with a KAM torus (see Ref. [19]).

For our simulations we have considered 10 000 par-
ticles shot into the scattering region at initial veloci-
ties v ≈ 0.5831. The initial conditions are (x0,y0,ẋ0,ẏ0) =
(0,0,v cos(ϕ),v sin(ϕ)), with shooting angle ϕ ∈ [0,2π ]. Then
we get the fraction of particles within the scattering region
between t and t + dt , that is, P (t)dt , and we represent
log10(P (t)) vs log10(t) to get the value of the parameter α

(the slope of the resulting straight line). Calculating α for
different values of β, we obtain the evolution of the parameter
α with β. In Fig. 4 we can see that the numerical values
of α(β) fit a quadratic curve as α ≈ A0 + A1β + A2β

2, with
A0 = 0.46138, A1 = −2.5311, and A2 = 15.185. We have
indeed found that the decay law of the time delay statistics
is algebraic, according to Eq. (6), for the range of energies
where the regime of the system is open nonhyperbolic. For
the initial conditions chosen to perform our computations, this
regime takes up to β ≈ 0.4. The values of the coefficients
A0, A1, and A2 are exclusively valid in the range of values
that we have considered for the nonlinear fitting, [0.05,0.4].
However, we can expect that the value of the parameter α in the
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FIG. 4. Evolution of the parameter α: the exponent α of the
algebraic decay law [see Eq. (6)] in the relativistic Hénon-Heiles
system under the variation of β. The initial velocity of v ≈ 0.5831.
There is a quadratic trend, α ≈ A0 + A1β + A2β

2, where A0 =
0.461 38, A1 = −2.5311, and A2 = 15.185.

nonrelativistic framework may be similar to the one obtained
by the quadratic formula. This is because the minimum value of
the range considered for the fitting, that is, 0.05, is relatively
close to β → 0. Indeed, the coefficient A0 = 0.461 may be
deemed a good approximation of the Newtonian framework
since this yields a value of α equal to 0.386.

As the speed of particles increases and β > 0.4, the measure
of bounding KAM surfaces is practically negligible in the
scattering region and all the trajectories exit from there. The
decay law of the particles becomes exponential according to
Eq. (7),

P (t) ∼ e−τ t , (7)

where 1/τ is the characteristic time for the scatterer.
We can proceed similarly to calculate the evolution of

the parameter τ while β is increased. We shoot 10 000
particles into the scattering region with initial conditions
(x0,y0,ẋ0,ẏ0) = (0,0,v cos(ϕ),v sin(ϕ)), with v ≈ 0.5831 and
shooting angle ϕ ∈ [0,2π ]. Getting the fraction of particles
into the scattering region between t and t + dt , we represent
ln(P (t)) vs t . The slope of the resulting straight line is the
value of the parameter τ . If we do the same for increasing
values of β, we obtain the relation between τ and β. Figure 5
shows the quadratic evolution of the numerical data on the

0.4 0.5 0.6 0.7 0.8 0.9 1
β
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0.1

0.15

0.2

τ

FIG. 5. Evolution of the parameter τ of the exponential decay law
of the relativistic Hénon-Heiles system under the variation of β. The
initial velocity of v ≈ 0.5831. The trend is quadratic, τ ≈ τ0 + τ1β +
τ2β

2, where τ0 = 0.065 207, τ1 = −0.028 988, and τ2 = 0.4125.
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FIG. 6. Representation of the relativistic kinetic energy of the
system as an explicit function of β, K(β) [see Eq. (8)]. While the
system is in the open nonhyperbolic regime, the kinetic energy fits a
quadratic curve. K(β) ≈ K0 + K1β + K2β

2, where K0 = 0.256 76,
K1 = −0.771 33, and K2 = 1.2553.

parameter τ , while the Lorentz factor varies according to τ ≈
τ0 + τ1β + τ2β

2, where τ0 = 0.065 207, τ1 = −0.028 988,
and τ2 = 0.4125.

In the next section we see why the numerical values of α(β)
and τ (β) follow a quadratic trend.

V. DISCUSSION OF THE ESCAPE TIME AND THE DECAY
LAW

In the present section we follow a qualitative approach to
discuss the trends of the global properties of the system that
we have studied in Secs. III and IV as T̄e(β), α(β), and τ (β).
First, we take the relativistic kinetic energy of the system,
K = mγc2 − mc2, as an explicit function of β:

K(β) = v2

β2
√

1 − β2
− v2

β2
. (8)

In Fig. 6 we represent K(β). If we try to fit the curve
K(β) to a polynomial while the system is in the open
nonhyperbolic regime (up to β ≈ 0.4), we see that the
numerical values of the relativistic kinetic energy of the system
fit a quadratic curve: K(β) ≈ K0 + K1β + K2β

2, where K0 =
0.256 76, K1 = −0.771 33, and K2 = 1.2553.

The parameter α in Eq. (6) is related to the square of the
average speed at which the particles leave the scattering region.
The higher the α, the faster P (t) decays and, therefore, the
faster the particles exit from the scattering region. Therefore,
we may consider that the parameter α should be directly
proportional to the energy of the system, in a linear way. This
is indeed the case for the nonrelativistic Hénon-Heiles system.
In Fig. 7 we show the linear relation between the parameter α

and the total energy of the classical Hénon-Heiles system, EN ,
in the open nonhyperbolic regime. This numerical result was
also demonstrated in previous works [20]. Then, if the energy
of the system fits a quadratic curve of β and it is also directly
proportional to α, we may expect that the parameter α will
show a quadratic trend when β is varied.

As we did for the open nonhyperbolic regime, now we
can proceed to fit the curve K = K(β) to a quadratic curve,
while the system is in the open hyperbolic regime, β ∈
(0.4,0.8]. This is shown in Fig. 7. It yields a second-order
curve, K(β) ≈ K0 + K1β + K2β

2, where K0 = 0.254, K1 =

0.17 0.18 0.19 0.2
E

N

0.5

1

1.5

2

α

FIG. 7. Linear correlation between α and the total energy of the
nonrelativistic Hénon-Heiles system.

−0.3869, and K2 = 5968. R2 = 0.9971. The goodness of the
fit to a quadratic curve of the numerical data on K = K(β)) in
the open hyperbolic regime is quite high so we can conclude
that, within this energy regime, K ∝ β2. The parameter τ in
Eq. (7) is also related to the square of the average speed at
which the particles leave the scattering region. Then we can
again conclude that τ is linearly proportional to the energy
of the system, and therefore, this explains why the numerical
values of τ (β) follow a quadratic trend for the considered range
of β.

We are now in a position to understand the linear trend of
the curve T̄e(β) before the KAM island destruction at β ≈ 0.4
as shown in Fig. 2. If K ∝ α and α ∝ β2, considering that β is
a magnitude related to the velocity of the particles, and this is
inversely proportional to the escape time, then 1/T̄e ∝ β2. In
Fig. 8, we can see the results obtained from our computations.
The relation between 1/T̄e and β2 is linear. The interesting
result is that a transition from β ∈ [0,0.4) (or β2 ∈ [0,0.16) in
the graph) to β ∈ [0.4,0.6] (or β2 ∈ [0.16,0.40]) was detected.
This transition corresponds to the destruction of the KAM tori
(about β ∼ 0.4). This explains the leap shown in Fig. 2 at
β ∼ 0.4. This is also the value at which the percentage of
trapped particles turns sharply towards 0 in Fig. 3. Both slopes
of the straight lines in Fig. 8 determine the speed of particles

0 0.1 0.2 0.3 0.4

β2

0.02
0.03
0.04
0.05

T
e-1

KAM destruction
β ≈ 0.4

FIG. 8. Analysis of the relation between the average escape times
of particles T̄e and β: the linear relation between 1/T̄e and β2. At
β ∼ 0.4 (that is, β2 ∼ 0.16 in the graph), we can see a transition
corresponding to the destruction of the KAM tori. This explains the
leap that is shown in Fig. 2 at β ∼ 0.4 and why the percentage of
trapped particles in the scattering region turns sharply towards 0 in
Fig. 3.
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exiting the scattering region. This is more numerical evidence
of the KAM island stickiness.

Likewise, since τ ∝ β2 according to Fig. 5 and we can again
state that β is inversely proportional to the escape time, 1/T̄e ∝
β2. Therefore, the same reasoning can be used to explain the
behavior in Fig. 2 from β ∼ 0.4 onward.

VI. DECAY-LAW CHARACTERIZATION

In previous studies (see Ref. [20]), Zhao and Du derived a
formula for the exponential decay law, setting the parameter
τ in Eq. (7) as a function of the energy of the nonrelativistic
Hénon-Heiles system (see Ref. [20]). The regime of energies
considered by them was the open hyperbolic one, with the
model simplified by the assumption of the nonexistence of
KAM islands for Newtonian energies higher than EN = 1/6.
In this section we apply a similar methodology for the open
hyperbolic regime but considering the relativistic corrections
in order to find a theoretical expression for the escape rate
of the Hénon-Heiles system. The phase-space distribution can
generally be expressed as

ψ(p,q) = δ(�E − H (p,q))∫
dpdq δ(�E − H (p,q))

, (9)

where p and q are the coordinates of the linear momentum (see
Ref. [21]). δ is the operator that expresses a small variation of
the variables in parentheses. �E is the difference between the
relativistic mechanical energy, K + V = E − mc2, and the
threshold energy where the whole phase space of the system
is chaotic and the particles may escape from the scattering
region, Ee = 1/6. For convenience and simplicity, we have
selected K + V instead of the total relativistic energy E in
the following calculations. In fact, the constant value of �E

equals the kinetic energy of the particle when it is moving
freely outside the scattering region according to Eq. (8).
When it is under the effect of the Hénon-Heiles potential
V , then the kinetic and the potential energy are continually
being exchanged in order to keep the sum K + V constant.
�E is a conserved quantity and the following reasoning is
completely valid. As described by Zhao and Du in Ref. [20], the
phase-space distribution can be rewritten in terms of (x,y,θ )

as ρ(x,y,θ ) = 1

2πS(�E)
, where θ is the angle between the

direction of the momentum p and the y axis. S(�E) is the
area of the well. To define the area of the well, we have
to consider the straight lines which contain the three saddle
points of the Hénon-Heiles system and are perpendicular to
the direction of the bisector lines of the equilateral triangle
arranged by these three saddle points. Therefore, S is the
region bounded by the well contour lines and the aforesaid
straight lines. Given N particles in the S region, the number
of particles leaving the well through the opening at a saddle
point [for instance, P1 = (0,1)] in a unit time can be expressed
as N

∫ xB

xA
dx

∫ π/2
−π/2 ρ(x,y,θ )v(x,y) cos(θ )dθ , where the integral

in x is along the straight line which contains P1. The limits
of integration xA and xB are the points where the contour
lines of the Hénon-Heiles potential intersect the straight line
that contains P1. If we note the triangular symmetry of the
system, the number of particles leaving the well from the three
openings in a unit time is just three times the previous result.
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FIG. 9. Area of well S of the Hénon-Heiles system. (a) Evolution
of S under the variation of energy of the system �E. The initial
velocity is v ≈ 0.5831. The trend is quadratic, S(�E) = S0 +
S1�E + S2�E2, with S0 = 1.299, S1 = 6.7271, and S2 = −7.3541.
The regime of considered energies is the hyperbolic one, from
β = 0.4 on. The maximum value of the energy �E corresponds
to β = 0.9. (b) Area of well S as a function of β. The trend is
quadratic, S(β) = s0 + s1β + s2β

2, with s0 = 2.2321, s1 = −3.7433,
and s2 = 4.8112.

The change of N with respect to t is

dN(t)

dt

= −3N (t)ρ
∫ π/2

−π/2
cos(θ )dθ

∫ √
2�E/3

−√
2�E/3

×
√

2(�E − 3x2/2)dx = −2π
√

3�EρN (t). (10)

If we compare this result with Eq. (7), we obtain the analytical
expression for the escape rate as

τ (�E) =
√

3�E

S(�E)
. (11)

There is no algebraic approach to obtain the expression
for S = S(�E), but we can determine it by applying an
indirect method such as, for instance, the Monte Carlo method.
In Fig. 9(a) we represent the area of the well S as a
function of �E. The numerical results fit a quadratic poly-
nomial: S(�E) = S0 + S1�E + S2�E2, with S0 = 1.299,
S1 = 6.7271, and S2 = −7.3541. The value of S0 is in fact
the area of the equilateral triangle whose vertexes are the three
saddle points of the Hénon-Heiles system, that is, S0 = 3

√
3

4 .
Therefore, we can obtain the expression of τ = τ (�E) as

τ (�E) =
√

3�E

S0 + S1�E + S2�E2
. (12)

In Fig. 9(b) we show S as a function of β. Again, the
numerical results fit a quadratic relation: s(β) = s0 + s1β +
s2β

2, with s0 = 2.2321, s1 = −3.7433, and s2 = 4.8112.
We can obtain the analytic expression of τ = τ (β) from

Eq. (12) because the conserved value of �E must agree with
Eq. (8) when it is applied to a free-moving particle. Then we
express τ (β) as

τ (β) =
√

3
(K0 + K1β + K2β

2) − Ee

s0 + s1β + s2β2
, (13)

where we have expressed the value of the conserved energy of
the system �E as K0 + K1β + K2β

2 − Ee. Since Eq. (13) is
a fraction of two quadratic polynomials, it can be expressed as
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FIG. 10. Comparison between the data for the parameter τ from
the numerical computations and the results obtained from the analytic
expression according to Eq. (13).

τ (β) = �0 + �1β + �2β
2, which corresponds to a quadratic

polynomial as shown in Fig. 5. In Fig. 10 we compare the value
of the parameter τ obtained from the numerical computations
and the results of the analytic formula of Eq. (13).

Now we obtain a reasoning for the parameter α as a function
of β according to Eq. (6) in the open nonhyperbolic regime.
Toward this goal, we consider the stickiness effect of the
KAM islands in the trajectories which leave the scattering
region and eventually pass through the KAM tori. The basic
idea is well explained in [22]. If a process that decays (or
grows) exponentially is killed randomly, then the distribution
of the killed state will follow a power law in one or both
tails. Indeed, we can consider that all the particles leaving
the scattering region follow an exponential decay law, but
because some of the trajectories pass close to the KAM islands,
the exponential decay process is killed during a certain time.
The average result is that the decay law when sizable KAM
tori exist is algebraic. Therefore, if we consider the exponential
decay law of the particles P (t) = e−τ t killed at a random time
T which is exponentially distributed with parameter ν, then
the killed state P̄ = e−τT has the probability density function
fP̄ (t) = ( ν

τ
)t

−ν
1−τ for t > 1. Therefore, the average decay law

of the particles shows a power-law behavior. For the sake
of clarity, τ is the parameter of Eqs. (12) and (13), which
regulates the exponential decay law of the particles. When a
particle trajectory passes close to a KAM island, the KAM
stickiness causes that the escape process is killed during a
certain time. Indeed as shown in Fig. 3, the higher the energy
of the system is, the smaller the area of the KAM island is.
Therefore, we can consider that for higher energies it is more
difficult for a certain trajectory to pass close to KAM islands.
The exponential decay of the particles is more likely to be
killed at low energies than at higher energies. In that sense the
parameter ν is directly related to the energy of the system so
we can rewrite the expression for fP̄ (t) as a function of β as
fP̄ (t) = ( g(β)

τ
)t

−g(β)
1−τ . The function which relates ν to β is g(β).

Comparing fP̄ (t) with Eq. (6), we can write α(β) = g(β)
1−τ (β) .

We have proposed an expression for g(β) that matches quite
well the numerical values obtained for α(β) as

g(β) = 1

DPS
√

�KAM
,

0.1 0.2 0.3 0.4
β
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FIG. 11. Comparison between the data for parameter α from the
numerical computations and the results obtained from the analytic
expression according to Eq. (14).

where DPS is the dimension of the phase space of the system,
in this case, DPS = 4. According to the proposed expression,
g(β) is inversely proportional to the area of the KAM island
due to the term 1√

�KAM
and also to the dimension of the phase

space. The higher the dimension of the phase space is, the less
probable it is that a particle will reach the KAM region since
there are other directions in which it can go. The obtained
formula to express the parameter α as a function of β is

α(β) = 1

DPS

1√
�KAM

1 − τ (β)
. (14)

In Fig. 11 we compare the value of the parameter α obtained
from the numerical computations and the results from the
analytic formula of Eq. (14).

We have seen throughout this work that the dynamics of the
relativistic Hénon-Heiles mainly depends on the evolution of
the topology of the phase space when we vary β. In particular,
we have concluded that the existence of KAM islands in
the phase space of the system is the key driver to exhibit
a nonhyperbolic or a hyperbolic dynamics, regardless of the
value of β. From this point of view, the global properties of
the system which depend on the topology of the phase space
may vary even for low velocities. Although the Hénon-Heiles
potential was initially developed to model the motion of stars
around an axisymetrical galaxy, we think that the phenomena
described in the present work may be related to many other real
phenomena that occur in Nature. For instance, the M-sigma (or
M-σ ) relation is an empirical correlation between the stellar
velocity dispersion σ of a galaxy bulge and the mass M of the
supermassive black hole at its center (see Refs. [23] and [24]).
This correlation is quite relevant since it is commonly used to
estimate black-hole masses in distant galaxies using the easily
measured quantity σ . The M-sigma relation is well described
by an algebraic power law, and although the applications of
the Hénon-Heiles and the M-sigma models are very different,
we speculate that the underlying mathematical properties are
similar, including the presence of KAM islands in the phase
space of both systems. Therefore, the KAM islands would be
responsible for the algebraic decay law, and hypothetically,
their destruction would imply an exponential decay law to
relate σ to the mass M of a supermassive black hole.
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VII. CONCLUSIONS

In the last years, there has been important progress in
understanding the relativistic effects in chaotic scattering.
Most research has focused on studying the discrepancies
between the Newtonian and the relativistic approaches over
the trajectories of the particles (see Refs. [6–9]). More
recently, there have been some results on the dimension of
the nonattracting chaotic invariant set of a chaotic scattering
system based on the four-hill potential (see Ref. [10]). They
state that this global property of the system can be accurately
predicted by the Newtonian approximation in slow chaotic
scattering motion. Here we show that some other relevant
global properties of chaotic scattering systems do depend on
the effect of the Lorentz transformations and we may consider
the relativistic corrections when we want to describe them in
a realistic manner, even for low velocities. We have used the
Hénon-Heiles system as a model reference for the theoretical
reasoning and for the numerical computations.

We consider that the global properties of the Hénon-Heiles
system vary because the Lorentz corrections destabilize the
topology of the phase space. In this sense, according to
the regime of energies we have chosen for our numerical
calculations, the KAM islands are fully destroyed for β ≈ 0.4.
We have proved in Fig. 2 that the average escape time T̄e in
the Hénon-Heiles system decreases when β increases. Indeed
at β ≈ 0.4 there is a leap where the linear trend of T̄e changes

abruptly. This can be easily explained from the perspective
of KAM island destruction (see Fig. 3). We have explained
the shape of the curves T̄e(β), α(β), and τ (β) in Figs. 2, 4,
and 5 by energetic considerations. We have also characterized
the decay laws of the open nonhyperbolic and hyperbolic
regimes, obtaining algebraic expressions that fit the data from
our numerical computations.

Finally, we have speculated about the possibility of finding
this dependence of the global properties of the system on
the topology of the phase space in many other phenomena
in Nature. For instance, the M-σ correlation (see Refs. [23]
and [24]) is well described by an algebraic power law. We
may consider that this relation is due to the presence of KAM
islands in the phase space. Its destruction would involve an
exponential decay law.
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