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a b s t r a c t 

We report our investigation of role of shape of a harmonically trapped potential system 

driven by a biharmonic external force with two widely different frequencies ω and � with 

� � ω on vibrational resonance. The potential is capable of generating odd number of po- 

tential wells depending upon the values of the parameters in the potential function. Apply- 

ing a theoretical approach we obtain an analytical expression for the response amplitude Q 

at the low-frequency ω. The response amplitude exhibits multiple peaks and approaches a 

non-zero limiting value when the amplitude of the high-frequency force is varied. We ex- 

plain the mechanism of observed resonance dynamics. We bringout the effect of number 

of potential wells on the resonance behaviour. 

© 2016 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Nonlinear systems are ubiquitous and certain types of them are capable of showing a variety of phenomena. Among the

various phenomena exhibited by nonlinear systems nonlinear resonances are fundamental importance in basic and applied

sciences. The forced resonance (resonance induced by an additive external periodic force) [1–4] and parametric resonance

[4,5] occur in both linear and nonlinear systems. The stochastic resonance [6,7] , coherence resonance [8,9] , auto resonance

[10,11] , ghost resonance [12–14] , chaos resonance [15] and vibrational resonance [4,16–20] can be realized only in nonlinear

systems. The present paper is concerned with vibrational resonance. Consider a nonlinear system driven by two periodic

signals of widely different frequencies, say ω and � with � � ω. Assume that in the absence of high-frequency ( �) force,

the response amplitude of the system at the low-frequency ω is weak. When the amplitude g of the high-frequency force

is varied from a small value, the response amplitude at the low-frequency ω displays resonance at one or more values of g .

This high-frequency force induced resonance at the low-frequency is termed as vibrational resonance. 

Gitterman [17] and Blekhman and Landa [18] developed theoretical methods for analyzing vibrational resonance. Since

then this resonance phenomenon has been investigated theoretically, numerically and experimentally in many oscillators, 

excitable systems, maps, networks and time-delayed systems. It is important to investigate the role of shape of potentials

on vibrational resonance. In this direction, the occurrence of vibrational resonance has been examined in bistable [16–18,21–

24] , monostable [25] , asymmetric [26] , spatially periodic [27] and spatially extended single-well [28] potentials systems. It

has also been analyzed in an excitable system [29] and in a system with signum nonlinearity [30] . 
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Fig. 1. The shape of the potential (1) with ω 

2 
0 = 1 and for four values of β . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motivated by the above consideration, in the present paper we consider the damped nonlinear system with harmonically

trapped potential 

V = 

1 

2 

ω 

2 
0 x 

2 − β cos x, ω 

2 
0 , β > 0 (1)

and driven by the biharmonic force. The equation of motion of the system of our interest is given by 

ẍ + d ̇ x + ω 

2 
0 x + β sin x = f cos ωt + g cos �t, � � ω. (2)

In Eq. (2) � � ω and d > 0. A feature of the potential given by Eq. (1) is that it can generate odd number of potential

wells of different depths depending upon the values of the parameters ω 

2 
0 

and β . Fig. 1 shows the shape of the potential

for four fixed values of β for ω 

2 
0 

= 1 . The multistable potential generated experimentally in an experimental torsion balance

oscillator [31] resembles that of the multistable potential given by Eq. (1) for larger values of β . It can be used as an

alternative potential for the typical polynomial potentials V ( x ) used for representing potentials with single-well, triple-well

and other odd-number of wells. 

Here, we are interested in investigating the role of shape of the potential given by Eq. (1) on vibrational resonance.

Applying a theoretical treatment, we obtain an approximate analytical expression for the response amplitude ( Q ) at the

low-frequency ω. The theoretical prediction is found to be in good agreement with the numerically computed Q . Even for

the single-well case of the system the response amplitude shows number of resonance peaks approaching a limiting value.

We describe the mechanism of observed variation of Q . 

The organization of the paper is as follows. To start with in Section 2 we present the effect of the parameter β on

the shape of the potential and the number of equilibrium points. The number of equilibrium points depends on β . In

Section 3 first we assume that the solution of the system consists of two frequencies ω and � and obtain an approxi-

mate linear equation of motion for the component of solution with period 2 π / ω or the frequency ω. We find an analytical

expression for Q ( ω). We compare the theoretical Q with the numerically computed Q . Then we analyse the occurrence

of vibrational resonance for the cases of the system with single-well. Vibrational resonance of the system with three and

five wells is discussed in Section 4 . In Section 5 we present the effect of initial conditions on Q ( ω) for β = 15 . Finally,

Section 6 contains conclusion. 
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Fig. 2. x ∗ (equilibrium points) versus the parameter β of the system (2) in the absence of biharmonic force. Here ω 

2 
0 = 1 and x ∗ is independent of d . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Effect of β on the shape of the potential and the number of equilibrium points 

The shape of the potential and the number of local minima and maxima of the potential (number of equilibrium points

of the system (2) in the absence of the external periodic force) depends on the parameters ω 

2 
0 

and β . Here, we consider

the effect of β . The potential is symmetrical about x = 0 . As shown in Fig. 1 for ω 

2 
0 

= 1 the potential has odd number of

wells depending on the value of β . The minima or the maxima of the potential (1) are the x -component of the equilibrium

points ( x ∗, ˙ x ∗ = y ∗ = 0 ) of the system (2) in the absence of the external driving biharmonic force. They are the roots of the

equation 

ω 

2 
0 x 

∗ + β sin x ∗ = 0 . (3) 

x ∗ = 0 is always a root. For fixed values of ω 

2 
0 and β from Eq. (3) we notice that | x ∗| ≤ β/ω 

2 
0 . Further, if x ∗ is a root of

(3) then −x ∗ is also a root. 

It is difficult to find an analytical expression for x ∗ from Eq. (3) . However, we can determine all the roots of Eq. (3) nu-

merically, by employing Newton-Raphson method. The stability determining eigenvalues are given by 

λ± = 

1 

2 

[ 
−d ±

√ 

d 2 − 4 ω 

2 
0 

− 4 β cos x ∗
] 
. (4) 

An equilibrium point is stable if λ± < 0 otherwise unstable. We numerically computed all real values of x ∗ and the stability

of the equilibrium point s ( x ∗, ˙ x ∗ = 0 ). Fig. 2 presents the numerically computed x ∗ as a function of β for ω 

2 
0 = 1 . The stable

and unstable equilibrium points are represented by continuous and dashed curves, respectively. (x ∗, ˙ x ∗) = (0 , 0) is always

stable. For 0 < β ≤ 3 π /2, (0, 0) is the only equilibrium point and the associated V ( x ) is a single-well potential ( Fig. 1 a,

where β = 3 ). For 3 π /2 < β ≤ 7 π /2 there are five equilibrium points with three being stable and the remaining two being

unstable. The corresponding potential ( Fig. 1 b where β = 5 ) V ( x ) is a three-well potential. Depending on the value of β the

system has 4 n − 3 , n = 1 , 2 , 3 , . . . number of equilibrium points while V ( x ) has 2 n − 1 , n = 1 , 2 , . . . wells. The change in the

number of equilibrium points and the number of wells in the potential occur at β = (4 n − 1) π/ 2 , n = 1 , 2 , . . . . 

3. Analysis of vibrational reasonance 

3.1. Analytical expression for the response amplitude 

Due to the choice of ω and � as � � ω, that is ω and � are widely separated, it is reasonable to assume that the

solution of Eq. (2) consists of a slow variable X with period 2 π / ω and a fast variable ψ with period 2 π / �. Substituting

x = X + ψ in Eq. (2) we get 

Ẍ + ψ̈ + d ˙ X + d ˙ ψ + ω 

2 
0 X + ω 

2 
0 ψ + β sin X cos ψ + β cos X sin ψ = f cos ωt + g cos �t. (5)

Adding and subtracting βsin X 〈 cos ψ〉 and βcos X 〈 sin ψ〉 in Eq. (5) , where 

〈 cos ψ 〉 = 

1 

�

∫ �

0 

cos ψ (t )d t , 〈 sin ψ 〉 = 

1 

�

∫ �

0 

sin ψ (t)d t (6)

with � = 2 π/ �, we arrive the equations for slow and fast motions as 

Ẍ + d ˙ X + ω 

2 
0 X + β〈 cos ψ〉 sin X + β〈 sin ψ〉 cos X = f cos ωt (7)

and 

ψ̈ + d ˙ ψ + ω 

2 
0 ψ + β( cos ψ − 〈 cos ψ〉 ) sin X + β( sin ψ − 〈 sin ψ〉 ) cos X = g cos �t, (8)



K. Abirami et al. / Commun Nonlinear Sci Numer Simulat 47 (2017) 370–378 373 

 

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively. As ψ is a rapidly varying function of time, we can approximate Eq. (8) as ψ̈ = g cos �t giving ψ = μ cos �t

where μ = −g/ �2 . Using this ψ in Eq. (6) we get 〈 cos ψ〉 = J 0 (μ) and 〈 sin ψ〉 = 0 where J 0 is zeroth-order Bessel function

[32,33] with the argument μ. Then Eq. (7) becomes 

Ẍ + d ˙ X + ω 

2 
0 X + βJ 0 (μ) sin X = f cos ωt. (9)

Eq. (9) is the equation of motion of a particle with the effective potential, 

V eff = 

1 

2 

ω 

2 
0 X 

2 − βJ 0 cos X (10)

subjected to linear damping and the driving force f cos ωt . Slow motion takes place about the stable equilibrium points of

the unforced system (9) . The X -component of the equilibrium points are the roots of the equation 

ω 

2 
0 X 

∗ + βJ 0 sin X 

∗ = 0 . (11)

The roots of Eq. (11) can be determined by using Newton–Raphson method. Then the linear equation for the deviation

 = X − X ∗ of the slow variable from X 

∗ obtained from Eq. (9) is 

Ÿ + d ̇ Y + ω 

2 
r Y = f cos ωt, (12)

where 

ω 

2 
r = ω 

2 
0 + βJ 0 cos X 

∗. (13)

In Eq. (13) ω r is resonant frequency of oscillation of the slow variable. Therefore, X 

∗ in Eq. (13) is the X -component of the

stable equilibrium point ( X ∗, ˙ X ∗ = 0 ). In the long time limit, the solution of Eq. (12) is Y = Q f cos (ωt + φ) where 

Q = 

1 √ 

S 
, S = (ω 

2 
r − ω 

2 ) 2 + d 2 ω 

2 (14)

and 

φ = tan 

−1 

(
dω 

ω 

2 − ω 

2 
r 

)
. (15)

Q is termed as the response amplitude of the system (2) at the low-frequency ω of the input signal. 

3.2. Numerical calculation of Q 

In order to compare the theoretically calculated Q we numerically integrate Eq. (2) using the fourth-order Runge–Kutta

method with step size (2 π / ω)/10 0 0. After leaving a sufficient transient we calculate Q using 

Q = 

√ 

Q 

2 
s + Q 

2 
c / f, (16a)

where 

Q s = 

2 

nT 

∫ nT 

0 

x (t ) sin ωt d t , (16b)

Q c = 

2 

nT 

∫ nT 

0 

x (t ) cos ωt d t , (16c)

with T = 2 π/ω and n = 500 . 

3.3. The analysis of the response amplitude Q ( ω) 

We fix the values of the parameters as d = 0 . 5 , ω 

2 
0 

= 1 , f = 0 . 1 , ω = 1 and � = 10 ω. First, we choose β = 3 for which

V ( x ) is a single-well potential as shown in Fig. 1 a. We treat g as the control parameter. For a fixed value of � the quantity

J 0 is a function of g . On the other hand, for a fixed value of ω 

2 
0 

we note that X 

∗ and ω 

2 
r are functions of J 0 and β , that is

functions of g and β . X 

∗, J 0 and ω 

2 
r are functions of g . Fig. 3 depicts the variation of X 

∗ with g for ω 

2 
0 

= 1 and β = 3 . For 0

< g ≤ 325 and g > 4 4 4 X ∗0 = 0 is the only equilibrium point and is stable. For 325 < g ≤ 4 4 4 there are three equilibrium

points: X ∗
0 

= 0 is unstable while the other two are stable. In calculating ω 

2 
r and then Q we use X ∗

0 
= 0 for 0 < g ≤ 325 and g

> 4 4 4. For 325 < g ≤ 4 4 4 X 

∗ � = 0 is used for calculating Q . When g is varied the quantity J 0 , ω 

2 
r and Q vary. From Eq. (14) it

is evident that Q becomes a maximum when | ω 

2 
r − ω 

2 | becomes a minimum. We vary g from a small value and compute

theoretical Q from Eq. (14) , numerical Q from Eq. (16) and quantity | ω 

2 
r − ω 

2 | . The results are presented in Fig. 4 . There

are many interesting results. The theoretical Q closely matches with the numerically computed Q . The Q oscillates with g ,

however, it is not a damped oscillation. Q not decays to zero in the limit of g → ∞ . Rather Q displays a number of resonance

peaks and approaches a nonzero limiting value. We explain the variation of Q with g using the quantities | ω 

2 
r − ω 

2 | and J 0 .

In Fig. 4 b we note that J 0 exhibits damped oscillation, becomes zero at certain values of g and J 0 → 0 as g → ∞ .

For finite values of g , whenever J 0 = 0 from Eq. (13) we find that ω 

2 
r = ω 

2 = 1(= ω 

2 ) . In this case from Eq. (14) we have

0 
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Fig. 3. Plot of X ∗ as a function of g for ω 

2 
0 = 1 , β = 3 of the unforced case of the system (9) . 

Fig. 4. (a) Variation of Q and | ω 

2 
r − ω 

2 | and (b) Q and J 0 as a function of the control parameter g for β = 3 , d = 0 . 5 , f = 0 . 1 , ω 

2 
0 = 1 , ω = 1 and � = 10 ω. 

The theoretical and numerically calculated values of Q are represented by continuous and dashed curves, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q = 1 /dω = 2 . For other values of g the quantity (ω 

2 
r − ω 

2 ) 2 � = 0 and hence Q < 2. That is, the maximum value of Q is 1/ d ω
and this happens whenever the resonant frequency ω r matches with the frequency ω of the low-frequency force. Because

J 0 crosses the value 0 number of times before becoming always negligibly small, there are number of resonance peaks of Q

before approaching a limiting value. This is the source for number of resonance peaks of Q . 

We need to account the second resonance in Fig. 4 a. The value of Q at the second resonance is lower than the value

of it at other resonance peaks. Consider the interval g ∈ [ g 1 = 325 , g 2 = 445] within which second resonance occurs. In this

interval of g the quantity J 0 < −ω 

2 
0 
/β and there three are equilibrium points: X ∗

0 
= 0 , X ∗± � = 0 . X ∗

0 
= 0 is unstable while X ∗±

are stable. Slow oscillation occurs about X ∗±. Further, in the above interval of g we have ω 

2 
r − ω 

2 (= ω 

2 
r − ω 

2 
0 
) = −βJ 0 cos X ∗±.

At g = g 1 and g = g 2 we find X ∗ = 0 in the expression for ω 

2 
r , J 0 = −ω 

2 
0 /β, ω 

2 
r = ω 

2 
0 − (βω 

2 
0 /β) = 0 , | ω 

2 
r − ω 

2 | = ω 

2 = 1 and

Q = 1 . Between g 1 and g 2 , J 0 cos X ∗±, varies with g and moreover both J 0 and cos X ∗± have a minimum at g = 384 . At this

value of g the quantity | ω 

2 
r − ω 

2 | has a local minimum as shown in Fig. 4 a. That is, when g is varied from g 1 , | ω 

2 
r − ω 

2 |
decreases from the value 1 (so that Q increases from the value 1), reaches a local minimum with the value � = 0 at g = 384

(hence Q becomes locally maximum with a value < 2) and then increases ( Q decreases) with further increase in the value

of g . The observation is that when J 0 < −ω 

2 
0 
/β and | ω 

2 
r − ω 

2 | has a local minimum with a value � = 0 then there will be a

resonance with a value less than 1/( d ω). 

Next, we describe the change in the shape of the effective potential V eff and the change in the center of the slow orbit.

In Fig. 3 we observe that X ∗
0 

= 0 is the only root of Eq. (11) for 0 < g ≤ 325 and g > 4 4 4. In this interval of g, V eff( x ) is

a single-well potential while for 325 < g ≤ 4 4 4 there are three X 

∗ and the potential V eff is a double-well potential. The

double-well potential occurs when J 0 < −ω 0 /β . If there is a change in the number of wells in the potential at, say, g 1 and

g 2 then there is a resonance at a value of g between g 1 and g 2 . What is the effect of change in the number of wells of the

potential V eff on X ( t )? If V eff is a single-well then there is a slow orbit centered about X ∗
0 

= 0 . This is the case for 0 < g

≤ 325 and g > 4 4 4. For 325 < g ≤ 4 4 4 from Fig. 3 as noted earlier the potential is a double-well in which X ∗0 = 0 is the

maximum of the potential while X ∗± � = 0 are the two local minima. X ( t ) occurs about X ∗±. That is, there are two distinct stable

solutions X ( t ), one about X ∗+ and another about X ∗−. 
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Fig. 5. (a) Q and | ω 

2 
r − ω 

2 | versus g and (b) Q and J 0 versus g for the system (2) for d = 0 . 5 , f = 0 . 1 , ω 

2 
0 = 1 , ω = 1 , � = 10 ω and β = 5 . The theoretical 

and numerical values of Q plotted in continuous and dashed lines, respectively. 

Fig. 6. Variation of Q with g for three initial conditions with β = 15 . (a) ( x (0) , ̇ x ) = (0,0). x (0) = 0 is the minimum of the MW. (b) ( x (0) , ̇ x ) = (5.88,0). x (0) = 

5 . 88 is the minimum of the RWAMW. (c) ( x (0) , ̇ x ) = (11.67,0). x (0) = 11 . 67 is the minimum of the RMW. (d-f) Variation of center of x , x c , as a function of g 

corresponding to the subplots a, b, c, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Vibrational resonance for β = 5 and β = 15 

In this section we analyse the occurrence of vibrational resonance for the cases of the potential with three and five wells.

4.1. Potential with three wells ( β = 5 ) 

For β = 5 the potential V ( x ) has a three-well shape. Fig. 5 shows the variation of Q, | ω 

2 
r − ω 

2 | and J 0 as a function of g

where X ∗ = X ∗0 = 0 . Here also Q displays a number of resonance peaks and approaches the limiting value 2. The values of Q

at second and third resonance peaks are 2 and these two resonance peaks occur when | ω 

2 
r − ω 

2 | = 0 with J 0 < −ω 

2 
0 
/β . The

sixth resonance peak has a value less then 2. It occurs at the local minimum of J 0 with J 0 < −ω 

2 
0 
/β and | ω 

2 
r − ω 

2 | becomes

a minimum with a value � = 0. We find that J 0 < −ω 

2 
0 /β for 285 ≤ g < 494 and 995 ≤ g < 1084. In these two intervals the

shape of the potential V eff becomes a double-well and in the first interval of g, Q displays double resonance with the peak

value Q = 2 while in the second interval of g, Q displays single resonance with the peak value less than 2. What will happen

if X 

∗ is chosen as X 

∗ � = 0? We answer for this for β = 15 . 

4.2. Potential with five wells ( β = 15 ) 

When β = 15 the potential is a five-well potential and is shown in Fig. 1 c. We designate the middle well (centered at

x = 0 ) as MW, the left-most well as LMW, the right-most well as RMW, the well lying between the middle-well and the left-

most well as LWAMW (left-well adjacent to the middle-well) and the well lying between the middle-well and the right-most

well as RWAMW. For β = 15 also the response amplitude exhibits a number of resonance peaks and it becomes 2 in the

limit of g → ∞ . We compute Q for three different initial conditions. We choose these initial conditions as ˙ x (0) = 0 and x (0)

as (i) the minimum of the MW potential ( x (0) = 0 ), (ii) the minimum of the RWAMW ( x (0) = 5 . 88 ) and (iii) the minimum

of the RMW ( x (0) = 11 . 67 ). Fig. 6 a–c show the Q obtained as a function of g in the interval [0, 250] for the above three

initial conditions. The variations of the center of the orbit denoted as x c corresponding to the subplots a-c are plotted in

Fig. 6 d–f. Fig. 6 a is for the initial condition chosen in the MW. Corresponding to this case, in Fig. 6 d x c = 0 and x ( t ) oscillates

about x c = 0 . In Fig. 6 e corresponding to the initial condition chosen in the RWAMW for 0 < g < 187 x c = 5 . 88 . That is, x ( t )

is confined to this well. As g increases from 0 the size of the orbit and the response amplitude Q ( ω) increase from a small
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Fig. 7. Basin of attraction plots of the orbits confined to the different wells of the potential V ( x ) of the system (2) for four values of g with d = 0 . 5 , f = 

0 . 1 , ω 

2 
0 = 1 , ω = 1 , � = 10 ω and β = 15 . The gray and black coloured regions correspond to the RMW (or LMW) and RWAMW (or LWAMW). The blank 

regions represents the basin of attraction of the orbit confined to MW. For details see the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value. This happens for 0 < g < 187. At g = 187 the orbit is able to overcome the barrier between the MW and RWAMW.

The orbit jumps to the MW and is confined to it. This is clear in Fig. 6 e where x c suddenly jumps to the value 0 at g = 187

and the value of Q also makes a jump from a higher value to the value 0.216. For further increase in g the value of Q follows

the path of Q realized in Fig. 6 a. Same result occurs if the initial condition is chosen as the minimum of the LWAMW. 

Suppose the initial condition is ˙ x (0) = 0 and x (0) is the minimum of the RMW (or LMW). Then when g is varied from

a small value the motion of the system is confined to this potential well for 0 < g < 107. In this interval of g , Q increases

from a small value. At g = 107 the Q value jumps from a higher value to a lower value as shown in Fig. 6 c. This is because

at this value of g the trajectory jumps to RWAMW and confined to that well. Consequently, in Fig. 6 c we observe that x c 
jumps from a value 11.67 to a value 5.88. Then for g ≥ 107, Q and x c follow the paths shown in Fig. 6 b and c, respectively. 

5. Basin of attraction 

In Section 4 for β = 15 we have shown in Fig. 6 that for each value of g in the interval 0 < g < 107 there are three dis-

tinct values of Q corresponding to the coexistence of the three distinct orbits confined to the MW, confined to the RWAMW

(or LWAMW) and confined to the RMW (or LMW). In obtaining Fig. 6 a–c we used three distinct initial conditions only. The

orbit in the limit of t → ∞ will be sensitive to initial conditions. Therefore, it is important to know the basin of attraction

of each value of Q , that is each of the three distinct orbits. We computed basin of attraction of these three orbits for a

range of values of g with x (0) ∈ [ −15 , 15] and ˙ x (0) ∈ [ −15 , 15] . This range of initial conditions is divided into number of

grid points. Each grid point is treated as an initial condition. For each initial condition the Eq. (2) is integrated and after

leaving sufficient transient the Q value of the long time orbit is calculated and the potential well within which the orbit lies

is noted. 

Fig. 7 shows the basin of attraction for the three orbits for four values of g . The gray coloured and black coloured grid

points represent basin of attraction of the orbits confined to the RMW (or LMW) and RWAMW (or LWAMW) of the potential,

respectively. The blank region represents the basin of attraction of the orbit confined to MW. For g = 5 the basin boundaries

of the basin of attraction of the various orbits are smooth. As the value of g increases the complexity of the basin of

attraction plot increases. This is evident from Fig. 7 b and c corresponding to g = 50 and g = 106 , respectively. For further
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Fig. 8. Plot of R i , i = 1 , 2 , 3 versus the control parameter g . Here d = 0 . 5 , f = 0 . 1 , ω 

2 
0 = 1 , ω = 1 , � = 10 ω and β = 15 . For details see the text. 

Fig. 9. Q as a function of β and g . The values of the other parameters are d = 0 . 5 , f = 0 . 1 , ω 

2 
0 = 1 , ω = 1 and � = 10 ω. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

analysis we define the quantity R i as 

R i = 

N i 

N 

, (17)

where N is the total number of initial conditions and N i is the number of initial conditions leading to the i th orbit. We

designate i = 1 , 2 and 3 for the orbits confined to MW, LWAMW (or RWAMW) and LMW (or RMW), respectively. Fig. 8

presents the variation of R i with g . As g increases R 1 increases while R 2 and R 3 decrease. For g ≥ 107 R 3 = 0 while R 2 = 0

for g ≥ 187. R 1 becomes unity for g ≥ 187. Finally, Fig. 9 shows colour code plot of variation of Q with the parameters β
and g . 

6. Conclusion 

We considered a biharmonically driven oscillator with the potential given by Eq. (1) . Depending upon the values of the

parameters ω 

2 
0 

and β , V ( x ) admits odd number of wells. We explored the effect of shape of the potential on vibrational

resonance. Using a theoretical method an analytical expression for the response amplitude Q ( ω) is obtained. One interesting

result is that for a fixed values of the parameters when the control parameter g is varied the response amplitude displays a

number of resonance peaks and Q ( ω) → 2 in the limit of g → ∞ . Whenever a resonance peak occurs due to the matching

of ω r with ω then Q(ω) = 1 / (dω) . Resonance is found to occur due to the local minimum of | ω 

2 
r − ω| � = 0 . The effect of

β is described. For systems with polynomial potentials Q ( ω) → 0 as g → ∞ . In contrast to this in system (2) even for

the single-well potential Q ( ω) not decays to zero but approaches the limiting value 1/( d ω). Investigation of other types of

resonances in the system with the potential given by Eq. (1) may provide interesting results. 
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