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We present an effective way to generate periodic signal in a delayed nonlinear system. The
generated signal at a desired frequency can be enhanced greatly by a nonlinear term. Spe-
cifically, the amplitude of the generated signal can be much larger than that of the input
signal by the cooperation of an appropriate time delay and a nonlinear term. When the pri-
mary, subharmonic or superharmonic resonance occurs, the desired signal is improved sig-
nificantly. Further, the delay time that induces the resonance behavior can be analytically
predicted. The result herein is different from the phenomenon of stochastic resonance or
vibrational resonance observed in time delayed systems. Compared with the stochastic res-
onance or vibrational resonance, the method used here is much simpler and the desired
signal can be generated in a much wider scope without changing the excitation. We believe
that our results might be useful for the signal processing research.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Signal processing research nearly involves every scientific and engineering field. From previous works, we know that a
weak low-frequency signal can be enhanced significantly by an appropriate amount of noise, a high-frequency signal, or a
time delay, when the response of the considered system shows a resonant behavior at the frequency of the external excita-
tion [1–5]. In [1], the signal is enhanced by a noise, and the phenomenon is well known as stochastic resonance. In [2], the
signal is enhanced by a high-frequency signal, and the phenomenon is known as vibrational resonance. Vibrational reso-
nance is similar to stochastic resonance, but the amount of noise is replaced by a high-frequency signal. In [3], the signal
is enhanced by a delayed feedback. In [4,5], the signal is enhanced by both a noise and a delay time. In [6–8], the signal
is enhanced by the cooperation of the delayed feedback and a high-frequency signal. For this case, the signal is enhanced
when the vibrational resonance phenomenon occurs with the help of a time delay. All these works [1–8] have studied
the signal enhancement problem precisely at the frequency of the excitation signal. Furthermore, the discussions are limited
to a linear response mechanism. It is because the nonlinear frequency is not considered in these works.

According to the nonlinear dynamical theory, besides the primary frequency, the resonance also occurs at the subhar-
monic or superharmonic frequencies [9–11]. Usually, the response amplitude at the primary, and at some special subhar-
monic or superharmonic frequencies can be solved approximately by different analytical methods [12–16], e.g., the
multiple scale method, the perturbation method, the harmonic balance method and the averaging method, etc. The former
researches about the nonlinear response property of the system are mainly focused on some special subharmonic or super-
harmonic frequency, such as 1/2, 1/3, 2 or 3 times of the excitation frequency [17–20], and so on. Thus, a question arises,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2014.08.005&domain=pdf
http://dx.doi.org/10.1016/j.cnsns.2014.08.005
mailto:jianhuayang@cumt.edu.cn
mailto:miguel.sanjuan@urjc.es
http://dx.doi.org/10.1016/j.cnsns.2014.08.005
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


Fig. 1. Contour plot of the response amplitude QðxiÞ in the s�xi plane. The horizontal axis is the frequency component xi which is given in Eq. (2). The
vertical axis is the delay time s which is included in Eq. (1). A color code plot shows the value of QðxiÞ. The signal parameters for simulation are f ¼ 0:1 and
x ¼ 0:1.
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whether is there any frequency component included in the response. Apparently, it is impossible. The subharmonic and the
superharmonic frequency components are caused by the nonlinearity in the system. Generally speaking, there are only a few
frequency components in the response and they can be obtained analytically. If we want to generate a periodic signal in a
wide frequency domain, a time delay is usually introduced as an effective tool. When the delay is considered, the natural
frequency of the linear system depends on the delay closely. In general terms, without any excitation, the free vibration
of the delayed system has families of periodic solutions [21]. The technical problem is not to generate or enhance a signal
separately, but rather to realize the two goals synchronously, and this is precisely the motivation of our research.

In this paper, we will show that the resonant behavior in fact can occur in a wide scope besides the primary, subharmonic
or superharmonic frequencies that have been investigated in the previous mentioned works, leading to the generation of a
steady new signal and then improving it greatly. Here, we design a simple delayed system with a cubic nonlinearity, i.e.,
_xðtÞ ¼ xðt � sÞ � x3ðtÞ þ f cosðxtÞ; ð1Þ
where s is the delay time and fcos ðxtÞ is a weak low-frequency external excitation. When this system is excited by both an
additive noise and a harmonic signal, the signal amplification problem is investigated in the non-adiabatic stochastic reso-
nance mechanism [22], and the delay time plays an important role in the signal amplification. In fact, the time delay is
widely existent in real systems. For example, in a bursting neuron, the membrane potential of an autapse depends on a
self-feedback current with time delay [23,24]. In the laser system, the light traveling from one point to another induces time
delay [25]. In the machining operation, the source of time delay is due to the dependence of the cutting force on the thickness
of the workpiece [13]. Time delay also exists in gene dynamics [26,27], physiological dynamics[28], population dynamics
[29], the spread and the dynamics of infectious diseases [30], motor control systems [31], etc. As to Eq. (1), if this model
is considered as a mechanism system, in which the inertia term is ignored due to it is much smaller than the damping term,
the cubic term is a nonlinear spring term, and the delayed term is a controller. In this paper, we do not consider it as a mech-
anism system, but make it as a model for a signal generator and amplifier.

The outline of the paper is composed as follows. In Section 2, the delay induced multiple resonances in the response are
introduced briefly. In Section 3, the signal enhancement problem in the resonance mechanism is investigated in detail. In
Section 4, for an arbitrary delay time, the signal generation and enhancement phenomena are demonstrated. Finally, the
novel results of the paper are described in the conclusions.

2. Delay-induced multiple resonances

Due to the existence of the time delay and the cubic term, the response of Eq. (1) has the form
xðtÞ ¼
Xn

i¼1

QðxiÞ cosðxit þ hiÞ: ð2Þ
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Fig. 2. Extraction of the response amplitude QðxÞ from the time series for f ¼ 0:1, and x ¼ 0:1 in (a), x ¼ 0:2 in (b), x ¼ 0:3 in (c).
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Herein, QðxiÞ is the amplitude of the output at the frequency xi, and hi is the corresponding initial phase angle. In Eq. (2), the
response xðtÞ contains the primary frequency xi ¼ x, the subharmonic frequency xi < x and the superharmonic frequency
xi > x. The frequency component xi may be induced by the excitation frequency x, the nonlinearity x3, and the natural
frequency of the linear delayed system which closely depends on the time delay s. Here, we denote the natural frequency
of the corresponding linear delayed system as xn. According to the vibration theory [18], the primary resonance occurs when
the excitation frequency approaches to the natural frequency, i.e., x ¼ xn þ �r. Here, r is the detuning parameter and � is a
small parameter, so that �r is a small quantity. Moreover, the subharmonic or superharmonic resonance occurs when the
natural frequency and the excitation frequency satisfy x ¼ mxn þ �r, where m is a positive number. We have the subhar-
monic resonance when m > 1, and the superharmonic resonance when 0 < m < 1.

Although Eq. (1) is in a simple form, it is difficult to obtain the analytical expression of the solution. In the following anal-
ysis, we mainly discuss the amplitude of the output according to numerical simulations. The amplitude of the output at the
frequency xi which denoted by QðxiÞ is numerically calculated through
QðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q 2

sinðxiÞ þ Q 2
cosðxiÞ

q
; ð3Þ
where Q sinðxiÞ and Q cosðxiÞ are the Fourier coefficients computed by
Q sinðxiÞ ¼
2
rT

Z rT

0
xðtÞ sinðxitÞdt; Q cosðxiÞ ¼

2
rT

Z rT

0
xðtÞ cosðxitÞdt; ð4Þ
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Fig. 3. Truncated steady time series (on the left column) and the corresponding response amplitude QðxiÞ at the frequency xi (on the right column) for
f ¼ 0:1;x ¼ 0:1 and s ¼61.7, 124.5, 187.3, 250.1 from top to bottom.
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herein T ¼ 2p=x; r is a positive integer which should be large enough, and xðtÞ is the time series which is directly calculated
from the original equation. We name QðxiÞ as the response amplitude at the frequency xi. If QðxiÞ > f with xi ¼ x, the
input signal is enhance by the system. If QðxiÞ > f with xi – x, a new signal is generated and enhanced by the system.
In our numerical simulations, the total time is 200T . After removing the first 100T as the transient response, we make the
last 100T as the steady time series. Eq. (1) is discretized by using a simple Euler scheme, i.e.,
xðnþ 1Þ ¼ xðnÞ þ ½xðn� s=DtÞ � xðnÞ3 þ f cosðxnDtÞ�Dt: ð5Þ
We choose Dt ¼ 0:01 as the time step. When the delay time s is a controllable parameter, we use Ds ¼ 0:1 as the delay time
step.

In order to get a global view, according to Eqs. (2) and (3), the effect of the delay time s on the response amplitude QðxiÞ
at the frequency xi is illustrated in a two-dimensional plane, as shown in Fig. 1, where a color code plot of the value of QðxiÞ
appears. In this figure, some light lines are separated by dark areas, which indicates the occurrence of the multiple reso-
nances. On the one hand, for a fixed delay time s, there may exist a primary resonance frequency and some other subhar-
monic or superharmonic resonance frequencies. Apparently, the resonance frequency may be equal to the frequency of the
input, or may be smaller or larger than it. It depends on the delay time completely. On the other hand, for a fixed frequency,
we make the resonance occur at this frequency by varying the delay time. To reveal the signal generation and enhancement
problem further, we will analyze different resonance patterns in the following discussions.

3. Signal enhancement in the resonance mechanism

In this section, we will discuss the signal enhancement problem based on the resonance mechanism. Throughout this sec-
tion, we will see that the input signal will be enhanced when the primary resonance occurs, and the generated new signal
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will be enhanced when the subharmonic or superharmonic resonance occurs. The time delay has an indelible contribution to
the signal generation and signal enhancement.

3.1. Signal enhancement by the primary resonance

According to Eq. (3), we first calculate the response amplitude at the excitation frequency x. With the increase of the
delay time s, the multiple primary resonance is clearly shown in Fig. 2. For the case x ¼ 0:1, the response presents a strong
resonance at the delay values s = 61.7, 124.5, 187.3 and 250.1 in Fig. 2(a). For the case x ¼ 0:2, the resonance occurs at s ¼
30.3, 61.7, 93.1, 124.5, 155.9, 187.3, 218.7, 250.1 and 281.5 in Fig. 2(b). For the case x ¼ 0:3, the resonance occurs at s ¼ 19.8,
40.8, 61.7 82.6, 103.6, 124.5, 145.4, 166.4, 187.3, 208.2, 229.2, 250.1, 271 and 292 in Fig. 2(c). We take the resonance as a
strong one is because the response amplitude of the output at the resonance peak is much larger than the amplitude of
the input signal. Interestingly, we realize it only by a delay time, and it does appear without the aid of a high-frequency sig-
nal or a noise. Hence, this shows that there is another way to enhance the weak low-frequency signal besides the stochastic
resonance [1] and the vibrational resonance [2,6–8] mechanisms. Moreover, the level of the signal enhancement induced by
the delay time is really high.

Also in Fig. 2, the resonance occurs at some specific values. Further, these values can be predicted approximately by the
analytical treatment. By ignoring the nonlinearity and the harmonic excitation in Eq. (1), we only consider the linear delayed
system, i.e.,
_xðtÞ ¼ xðt � sÞ: ð6Þ
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According to the linear vibration theory, the imaginary parts of the eigenvalues of Eq. (6) is determined by the system’s
natural frequency xn. When the response is in periodic motion, we search the solution of Eq. (6) in the complex form
x ¼ QeðixntÞ: ð7Þ
Substituting Eq. (7) into Eq. (6) and separating the imaginary parts from equation, then one has
xn ¼ � sinðxnsÞ: ð8Þ
Further solving Eq. (8), one obtains
s ¼ 1
xn
ð2pp� sin�1 xnÞ; ð9Þ
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where p is a positive integer number. Certainly, xn 6 1 in Eq. (9), this condition is satisfied when the external excitation is a
low-frequency signal. The primary resonance occurs when x ¼ xn. According to Eq. (9), in the range s 2 ½0;300�, we obtain
the analytical results of the delay time for the primary resonance are s � 61.8, 124.7, 187.5, 250.3 for the case x ¼ 0:1, and
s � 30.4, 61.8, 93.2, 124.7, 156.1, 187.5, 218.9, 250.3, 281.7 for the case x ¼ 0:2, and s � 19.9, 40.9, 61.8, 82.8, 103.7, 124.6,
145.6, 166.5, 187.5, 208.4, 229.4, 250.3, 271.3, 292.2 for the case x ¼ 0:3. Thus, it can be seen that the analytical values of s
which induce the primary resonance agree with the corresponding numerical results that shown in Fig. 2. The small error
may arise from the nonlinearity and the numerical integration. The error is located within the range allowed. Moreover, usu-
ally in engineering, the interest lies in the bandwidth of resonance peak. The bandwidth is defined by the cutoff frequencies,
at which Q ¼ Qmaxffiffi

2
p [32]. According to Eq. (9) again, we are also able to predict the subsequent resonant peaks beyond the delay

scope in Fig. 2. Specifically, if we want to obtain the location of the p� th resonance peak, we only need to substitute the
positive integer p into Eq. (9). Another fact from both the analytical and numerical results is the periodic property, of period
2p=x, of Q versus the delay time s. The signal can be enhanced effectively due to the cooperation of the delay time and the
nonlinearity term. Without the negative cubic term in the equation, the response would diverge easily.

In order to explain the delay-induced multiple resonances further, corresponding to some delay values that can induce
resonance peaks in Fig. 2, the truncated steady time series and the response amplitudes QðxiÞ of the output at the frequency
xi are shown in Fig. 3. On the one hand, when s = 61.7, 124.5, 187.3 and 250.1, the time series or the response amplitude
QðxiÞ at the frequency x presents obvious periods in each subplot. The figure displays strong resonance peaks at the
frequency x and weak resonance peaks at the frequency 3x and 5x. It is because the specific s and 3x;5x still satisfy
Eq. (9) approximately in the subplot. In other words, there are many natural frequencies for a delay fixed system. These fre-
quencies are called the first-, second-,. . .pth-order natural frequency respectively, when ordered sequentially. On the other
hand, the time series and the curves QðxiÞ �xi in these subplots are almost identical. It verifies the periodic property of the
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response versus the delay time. From the analysis in this section, we believe that the nonlinear delayed system is an effective
tool in enhancing a weak signal.

3.2. Signal enhancement by the subharmonic resonance

If we need the system to generate a signal with the frequency smaller than that of the input signal, we realize it by choosing
an appropriate delay. When the subharmonic resonance occurs, the desired signal gives birth. We extract the response
amplitude QðxiÞ at the specific frequency xi from the time series, as is shown in Fig. 4. We choose xi =
0:6x;0:65x;0:7x;0:75x;0:8x;0:85x;0:9x and 0:95x. Through varying the delay time s, we make the resonance occur at
these frequencies. As a result, a signal with the subharmonic frequency xi < x is produced according to our demand. In this
figure, the delay time corresponding to the first resonance peak turns smaller when the desired frequency increases from 0:6x
to 0:95x. Specifically, these numerical values are s = 103.6, 95.5, 88.6, 82.6, 77.4, 72.8, 68.7 and 65, as is labeled in Fig. 4. More-
over, compared with these resonance phenomena, there are more and stronger resonance peaks when the resonance occurs
near the excitation frequency. Similar to the analysis in the previous subsection, we give an explanation as to why these res-
onances occur at some specific delay values. If we substitute p ¼ 1 and xn ¼ 0:6x;0:65x;0:7x;0:75x;0:8x;0:85x;0:9x and
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Fig. 8. Truncated steady time series (on the left column) and the corresponding response amplitude QðxiÞ at the frequency xi (on the right column) for
f ¼ 0:1;x ¼ 0:1 and s ¼ 0, 20, 40, 85, 110, 135, 150 from top to bottom.
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0:95x into Eq. (9), then we obtain the delay time corresponding to the first resonant peak is s � 103.7, 95.7, 88.8, 82.8, 77.5,
72.9, 68.8 and 65.1 respectively. The analytical results agree approximately with the numerical calculations.

At the delay time that induces the first resonance peak in each subplot in Fig. 4, the truncated steady time series and the
corresponding response amplitude QðxiÞ at the frequency xi are plotted in Fig. 5. When s ¼ 65, 68.7, 72.8, 77.4, 82.6 and
88.6, the response amplitude reaches the strong resonance at the frequency 0:95x;0:9x; 0:85x; 0:8x;0:75x and 0:7x
respectively. It is coincident with the fact in Fig. 4. However, when s ¼ 95.5, the first strong resonance occurs at the fre-
quency 1:3x and the second strong resonance occurs at the frequency 0:65x. When s ¼ 103:6, the first strong resonance
occurs at the frequency 1:2x and the second strong resonance occurs at the frequency 0:6x. It is because the cases
s ¼ 95:5;xn ¼ 1:3x and s ¼ 103:6;xn ¼ 1:2x also satisfy Eq. (9). Moreover, compared with the first-order natural frequen-
cies xn ¼ 0:6x and xn ¼ 0:65x, the second-order natural frequencies xn ¼ 1:2x and xn ¼ 1:3x are much closer to the exci-
tation frequency x. Hence, for the case s ¼ 95:5, the first strong resonance peak occurs at the second-order natural
frequency 1:3x, but not at the first-order natural frequency 0:65x. Likewise, for the case s ¼ 103:6, the first strong reso-
nance peak occurs at the second-order natural frequency 1:2x, but not at the first-order natural frequency 0:6x. For the
same reason, the strongest resonance peak turns bigger gradually from Fig. 4(a) to Fig. 4(h).
3.3. Signal enhancement by the superharmonic resonance

The strong resonance not only occurs at the primary and subharmonic frequencies, but also occurs at the superharmonic
frequency. With the increase of the delay time s, we calculate the response amplitude QðxiÞ at the desired frequency
xi ¼ 1:1x;1:2x;1:3x;1:4x;1:5x;1:7x;1:9x and 2x respectively, as shown in Fig. 6. Reading directly from this figure,
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the numerical values of the delay time that induces the first resonance peak in each subplot is s ¼ 56;51:2;47:2;43:7;
40:7;35:8;31:9 and 30.3 respectively. According to Eq. (9), when p ¼ 1, the corresponding analytical delay value that induces
the first resonance at the desired frequency in each subplot is s � 56:1;51:4;47:3;43:9;40:9;36;32 and 30.4. In this figure,
near the excitation frequency x, there are more and stronger resonance peaks.

Corresponding to the first peak in each subplot in Fig. 6, we give the truncated steady time series and the response ampli-
tude QðxiÞ versus the frequency component xi in Fig. 7. All the strongest resonance peaks occur at the first-order natural
frequency, since the first-order natural frequency approaches to the excitation frequency.

4. Resonance in the fixed time delay system

In Fig. 8, for some fixed delay values, the steady time series and the resonance frequencies are shown clearly. For s = 0 and
20, there is no apparent resonance behavior. For s ¼ 40;85;110;135 and 150, the first-order natural frequency is
1:53x;0:73x;1:13x;0:92x and 0:83x respectively. Certainly, these values satisfy Eq. (9) approximately. It indicates the fact
again that a fixed time delay can generate a new signal that is different from the input signal. The generated signal is in fact
much stronger than the excitation one, and this is the result of the nonlinear response.

5. Conclusions

To conclude, we have introduced a delayed system as a signal generator to produce a signal according to our demand.
Moreover, the generated signal can be enhanced in a great degree. Specifically, on the one hand, if we want to obtain a strong
signal at a desired frequency, we only need to adjust the delay time in the considered system. Further, the optimal delay time
that produces the desired signal can be analytically predicted. On the other hand, for the system with a fixed delay time, the
response of the system has a strong resonant behavior at a natural frequency. Throughout this paper, we have shown that the
signal can be generated effectively even though the signal is not included in the excitation. Furthermore, it is important to
make it clear that the new signal is much stronger than the input signal. The cubic nonlinearity is a key factor to enhance the
generated signal. Without this term, the response of the system is in divergent or oscillating with a small amplitude. As a
result, the signal is generated and enhanced due to the cooperation of the time delay and the cubic nonlinearity. Given that
the noise or the high-frequency signal is not included in the excitation, the results in this paper are different from the sto-
chastic resonance or vibrational resonance in the delayed system. Moreover, using the method shown here to generate and
improve the signal strength has much more advantages as compared to the stochastic resonance or vibrational resonance
phenomena. However, the noise is unavoidable in many physical backgrounds. The system may present much more compli-
cated dynamics especially when the nonlinear frequency is considered. It is our future work. Nevertheless, we believe that
the results in this paper might have important impact on the signal processing issue.
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