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We investigate the saddle-node bifurcation and vibrational resonance in a fractional system that
has an asymmetric bistable potential. Due to the asymmetric nature of the potential function,
the response and its amplitude closely depend on the potential well where the motion takes
place. And consequently for numerical simulations, the initial condition is a key and important
factor. To overcome this technical problem, a method is proposed to calculate the bifurcation and
response amplitude numerically. The numerical results are in good agreement with the analytical
predictions, indicating the validity of the numerical and theoretical analysis. The results show
that the fractional-order of the fractional system induces one saddle-node bifurcation, while the
asymmetric parameter associated to the asymmetric nature of the potential function induces two
saddle-node bifurcations. When the asymmetric parameter vanishes, the saddle-node bifurcation
turns into a pitchfork bifurcation. There are three kinds of vibrational resonance existing in the
system. The first one is induced by the high-frequency signal. The second one is induced by
the fractional-order. The third one is induced by the asymmetric parameter. We believe that
the method and the results shown in this paper might be helpful for the analysis of the response
problem of nonlinear dynamical systems.

Keywords : Fractional-order derivative; saddle-node bifurcation; pitchfork bifurcation; vibrational
resonance.
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1. Introduction

The dynamics of nonlinear dynamical systems with
an asymmetric potential has been a topic of interest
in the past decades. For example, when an asym-
metric bistable system is excited by noise, the first
passage time usually needs to be calculated [Wang
et al., 2003]. When an asymmetric bistable system
is excited by both a noise and a weak signal, the
phenomenon of stochastic resonance occurs at an
appropriate noise intensity [Xu et al., 2005]. Under
a multiscale type excitation, the chaotic behavior
in a system with an asymmetric potential has been
investigated [Kwuimy et al., 2011]. For a parametric
and external harmonic force driven oscillator, the
chaotic dynamics of a nonlinear asymmetric oscil-
lator in a plasma device mode has been studied
[Buckjohn et al., 2011]. In a Duffing oscillator with
asymmetric single-well and double-well potentials,
the vibrational resonance has also been investigated
by experimental, numerical and analytical methods
[Chizhevsky & Giacomelli, 2006; Jeyakumari et al.,
2011].

Fractional calculus is a useful tool to model the
dynamic property in a wide range of engineering
and scientific fields. The fractional-order of a nonlin-
ear system is an important factor to induce complex
phenomena. Take the bifurcation in the fractional
system as an example, in a fractional Lorenz sys-
tem, the change of the fractional-order may induce
some typical bifurcations such as period-doubling
bifurcation, flip bifurcation, tangent bifurcation
and interior crisis bifurcation [Sun et al., 2010].
In the nonautonomous logistic system [El-Saka
et al., 2009] and the modified hybrid optical sys-
tem [Abdelouahab et al., 2012], the fractional-order
may induce Hopf bifurcation. In the stochastic sys-
tem, the change of the fractional-order can induce
P-bifurcation which makes the stationary proba-
bility density function translate from unimodal to
bimodal [Chechkin et al., 2003]. In the fractional
Duffing system with symmetric bistable potential,
the fractional-order of the damping induces pitch-
fork bifurcation and leads to new vibrational reso-
nance phenomenon [Yang & Zhu, 2012, 2013; Yang
et al., 2013].

Vibrational resonance is a phenomenon result-
ing as the response of nonlinear systems that
are excited by both a low-frequency and a high-
frequency signal [Landa & McClintock, 2000; Bal-
tanas et al., 2003]. Under this type of excitation,
the response amplitude at the low-frequency is a

nonlinear function of the parameter of the high-
frequency signal. Specifically, the curve of the
response amplitude versus the amplitude or the
frequency of the high-frequency signal presents a
resonance behavior. The diagram is similar to the
typical resonance curve in mechanics. The conse-
quence is that the weak low-frequency signal is
excellently enhanced by the high-frequency signal.
When the low-frequency harmonic signal is replaced
by an aperiodic signal, the vibrational resonance
can also be presented [Chizhevsky & Giacomelli,
2008].

To numerically simulate the bifurcation and
vibrational resonance phenomenon in an asym-
metric system, constitutes a technical problem
because the response of a particular nonlinear sys-
tem depends on the initial condition closely. The
dynamical behavior has a striking difference when
the motion moves in different potential wells. This
leads to the difficulty in verifying the theoretical
analysis by the numerical simulations. In the pre-
vious literature, although the vibrational resonance
and the saddle-node bifurcation are investigated in
an asymmetric bistable system [Chizhevsky & Gia-
comelli, 2006; Jeyakumari et al., 2011], the ways to
overcome this difficulty induced by the initial con-
dition in the numerical simulation have not been
mentioned. It still constitutes a technical problem.
Based on the problems mentioned above, a numer-
ical method will be proposed to simulate the bifur-
cation and resonance behavior.

Considering a general case, we take a simple
fractional oscillator as an example, i.e.

dαx

dtα
= −dV

dx
+ f cos(ωt) + F cos(Ωt). (1)

The excitations satisfy f � 1, ω � Ω. The sign
α is the fractional-order of the system. Usually, α
lies in the range (0, 2). There are several definitions
for the fractional derivative, such as the Riemann–
Liouville definition, the Caputo definition, the
Grünwald–Letnikov definition, etc. [Monje et al.,
2010]. Here, we use the Grünwald–Letnikov def-
inition for its widely used and simplicity in the
numerical discretization. The Grünwald–Letnikov
definition is defined as

dαx(t)
dtα

∣∣∣∣
t=kh

= lim
h→0

1
hα

k∑
j=0

(−1)j
(

α

j

)
x(kh − jh),

(2)
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where the binominal coefficients are(
α

0

)
= 1,

(
α

j

)
=

α(α − 1) · · · (α − j + 1)
j!

, for j ≥ 1.

(3)

The potential function V (x) is

V (x) = −1
2
ω2

0x
2 +

a

3
x3 +

b

4
x4, (4)

with ω2
0, a, b > 0. The asymmetric property of the

potential depends on the parameter a. For the case
a = 0, the potential has two symmetric wells; while
for the case a �= 0, the potential has two asymmetric
wells. For the case a < 0, the right well is deeper;
while for the case a > 0, the left well is deeper, as
shown in Fig. 1. The parameters ω2

0 and b mainly
influence the width and depth of the potential-well.
The roles of width and depth on vibrational reso-
nance are once studied in the ordinary Duffing oscil-
lator [Rajasekar et al., 2010]. Hence, we focus on the
effects of α and a on the dynamic behaviors in this
paper. The parameters α and a respectively indi-
cate the fractional nature and asymmetric property
of the system.

The structure of the paper is organized as fol-
lows. In Sec. 2, based on the method of direct
partition of motions, the theoretical analysis of
the equivalent potential function and the response
amplitude are obtained. In Sec. 3, the effects of the
fractional-order and the asymmetric parameter on

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

x

V
(x

)

Fig. 1. The shape of the potential function for ω2
0 = 1,

b = 1 and a = −0.6 (diamonds), 0 (continuous line) and
0.6 (triangles).

the saddle-node bifurcation are discussed respec-
tively. In Sec. 4, three kinds of vibrational resonance
are studied. Finally, the conclusions of the present
paper are given in the last section.

2. Theoretical Analysis

Since the frequencies acting on the system are such
that ω � Ω, the method of direction partition of
motions can be used to solve the response amplitude
at the low-frequency [Blekhman, 2000; Thomsen,
2003]. This method has been used in the theoret-
ical analysis of the Duffing oscillator [Gitterman,
2001; Blekhman & Landa, 2004], the quintic oscil-
lator [Jeyakumari et al., 2009a; Jeyakumari et al.,
2009b], the delayed system [Jeevarathinam, 2011],
the friction system [Thomsen, 1999], the supported
beam [Tcherniak, 1999], the ratchet system [Bor-
romeo & Marchesoni, 2006], the fractional-order
system [Yang & Zhu, 2012, 2013], etc. among others.
According to this method, we let x = X +Ψ, where
X and Ψ are a slow motion and a fast motion with
periods 2π/ω and 2π/Ω, respectively. Then, Eq. (1)
turns into

dαX

dtα
+

dαΨ
dtα

= ω2
0X + ω2

0Ψ − bX3 − bΨ3 − 3bX2Ψ

− 3bXΨ2 − aX2 − aΨ2 − 2aXΨ

+ f cos(ωt) + F cos(Ωt). (5)

Searching for the approximate solution of Ψ in the
following linear equation

dαΨ
dtα

= ω2
0Ψ + F cos(Ωt), (6)

it is easy to obtain

Ψ =
F

µ
cos(Ωt + ϕ), (7)

where µ2 = (Ωα cos απ
2 − ω2

0)
2 + (Ωα sin απ

2 )2 and

ϕ = −tan−1 Ωα sin απ
2

Ωα cos απ
2
−ω2

0
. Substituting Eq. (7) into

Eq. (5), and averaging all terms over the range [0,
2π/Ω], we obtain

dαX

dtα
= C1X − aX2 − bX3 − C0 + f cos(ωt), (8)

where C1 = ω2
0 − 3bF 2

2µ2 and C0 = aF 2

2µ2 . In the aver-
aging process, the slow motion is considered as a
constant. In Eq. (8), the effective potential function
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of the equivalent system is

Veff =
b

4
X4 +

a

3
X3 − C1

2
X2 + C0X. (9)

When the low-frequency excitation is free in Eq. (8),
the system may be a bistable system with one
unstable equilibrium and two stable equilibria. We
designate these three equilibria as X∗

S1, X∗
U and

X∗
S2 with X∗

S1 < X∗
U < X∗

S2. Here, X∗
S1 and X∗

S2
are the stable equilibria while X∗

U is the unstable
equilibrium. Or else, Eq. (8) is a monostable system
with only one stable equilibrium labeled by X∗

S . The
change of the equilibrium is the basis of the local
bifurcation analysis.

In general, the slow motion moves around the
stable equilibria. Letting, Y = X − X∗∗, here
X∗∗ denotes one stable equilibrium point. X∗∗ may
equal to X∗

S1, or X∗
S2, or X∗

S . Then, Eq. (8) turns
into

dαY

dtα
= ω2

rY − βY 2 − bY 3 + f cos(ωt), (10)

where ω2
r = C1 − 2aX∗∗ − 3bX∗∗2 and β = a +

3bX∗∗2. According to the linear response theory, the
steady response at the excitation frequency can be
found in the equation

dαY

dtα
= ω2

rY + f cos(ωt). (11)

Ignoring the transient induced by the initial per-
turbation, the steady solution of Eq. (11) is Y =
AL cos(ωt + θ), where



AL =
f√(

ωα cos
απ

2
− ω2

r

)2
+

(
ωα sin

απ

2

)2

θ = −tan−1
ωα sin

απ

2
ωα cos

απ

2
− ω2

r

(12)

Usually, we are interested in the quality of the sig-
nal enhancement of a system. Hence, a quantitative
index called response amplitude is defined as

Q =
AL

f

=
1√(

ωα cos
απ

2
− ω2

r

)2
+

(
ωα sin

απ

2

)2
. (13)

Obviously, Q measures the degree of enhancement
of the weak signal after passing through the nonlin-
ear system. On the basis of Q, the resonance phe-
nomenon can be analyzed. When the denominator
has the minimal value, the resonance occurs.

3. Saddle-Node Bifurcation

The saddle-node bifurcation is determined by the
real equilibria of Eq. (8), i.e. the roots of the
equation

C1X − aX2 − bX3 − C0 = 0. (14)

With the change of the bifurcation parameter, the
saddle-node bifurcation occurs when two equilibria
coalesce and appear/disappear [Guckenheimer &
Holmes, 1983; Medio & Lines, 2001]. In previous
literature [Jeyakumari et al., 2011], the saddle-node
bifurcation induced by the amplitude of the high-
frequency signal was discussed analytically. In this
section, we will study the effects of the fractional-
order α and the asymmetric parameter a on the
saddle-node bifurcation. A numerical method is pro-
posed to determine the bifurcation point.

3.1. Effect of the fractional-order
on the bifurcation

The bifurcation induced by the fractional-order α is
given in Fig. 2. When a �= 0, as shown in Figs. 2(a)
and 2(c), a saddle-node bifurcation occurs. For the
case a < 0, there is always a positive stable branch.
Before the bifurcation, this stable branch is con-
stituted by the sole stable equilibrium points X∗

S .
When α crosses the bifurcation point, an unstable
branch and a negative stable branch appear simul-
taneously. Meanwhile, the sole stable equilibrium
point X∗

S turns into the stable equilibrium point
X∗

S2. While for the case a > 0, a negative stable
branch is always existing. With the increase of α,
an unstable branch and a positive stable branch
appear simultaneously. When α crosses the bifur-
cation point, the sole stable equilibrium point X∗

S
turns into the stable equilibrium point X∗

S1 for this
case. In Fig. 2, the critical value for the saddle-
node bifurcation is α = 0.96 for both a = 0.6 and
a = −0.6. The critical value of α at the saddle-
node bifurcation point is influenced by the quan-
tity, but not the sign of the asymmetric parameter
a. In Fig. 2(b), a = 0, the potential is symmet-
ric. For this case, the bifurcation induced by the
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(a) a = −0.6

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

α

X
*

X
S
*

X
S1
*

X
U
*

X
S2
*

(b) a = 0
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(c) a = 0.6

Fig. 2. Analytical prediction of the fractional-order induced
bifurcation for ω2

0 = 1, b = 1, F = 3 and Ω = 6. In (a) and
(c), the saddle-node bifurcation appears. In (b), the pitchfork
bifurcation appears.

fractional-order is a supercritical pitchfork bifurca-
tion. Besides the supercritical pitchfork in this sub-
plot, the supercritical pitchfork bifurcation induced
by the high-frequency and the subcritical pitch-
fork bifurcation induced by the amplitude of the
high-frequency signal were discussed in detail in a

previous paper [Yang et al., 2013]. Here, we are
only interested in the bifurcation induced by the
fractional-order. Certainly, the bifurcation induced
by the high-frequency signal can also be investi-
gated by the same method. It is worth noting that
the bifurcation behavior in Figs. 2(a) and 2(c) is
named as perturbed pitchfork bifurcation by Thom-
sen [2003]. The term a

3x3 in the original potential
function in Eq. (4) is regarded as a perturbation.
It causes qualitative changes to the pitchfork bifur-
cation diagram. In other words, the supercritical
pitchfork bifurcation is unstable to the asymmetric
parameter a. Hence, the perturbation term takes
the bifurcation away from the pitchfork. Notice
that, the saddle-node bifurcation is generic, whereas
the pitchfork bifurcation is not. Besides, the saddle-
node bifurcation is discontinuous but the pitchfork
bifurcation is continuous. The pitchfork bifurcation
occurs with the appearance/disappearance of the
equilibrium points and their stability changes at
the same time. Apparently, in Figs. 2(a) and 2(c)
the stability of one stable branch does not change
after crossing the bifurcation point. Specifically, a
stable branch is always in a stable state when α lies
in (0, 2). As a result, the bifurcation in Figs. 2(a)
and 2(c) is a saddle-node bifurcation, but not a
pitchfork bifurcation.

In order to verify the validity of the analytical
prediction of the bifurcation behavior, the numer-
ical simulation should be carried out. If there is
no cross-well motion occurring between the two
wells, the equilibrium point around which the
motion takes place depends on the initial condi-
tions. According to Eq. (13), it further influences
the value of the response amplitude. Only to make
this problem clear, the analytical predictions of the
bifurcation behavior in Fig. 2 and the response
amplitude in Eq. (13) can be verified by the numer-
ical simulation correctly. The time series calculated
from Eq. (1) under different initial conditions are
given in Fig. 3. For the case α = 0.5, the four
paths coincide completely after a very short time.
The motion occurs around the only stable equilib-
rium X∗

S . For the case α = 1.5, there are two paths
moving around the equilibrium X∗

S1 and two others
moving around the equilibrium X∗

S2. After the tran-
sient motion, the time series along the same man-
ifold are completely coincident. According to this
fact, for different initial conditions, the motions are
only located in one or two specific locations after a
long enough time interval. In the simulation, only
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(e) (f)

Fig. 3. Time series under different initial conditions for f = 0.05, ω1 = 0.5, F = 3, Ω = 6. In (a) and (b), a = −0.6; in
(c) and (d), a = 0; in (e) and (f), a = 0.6. In (a), (c) and (e), α = 0.5; In (b), (d) and (f), α = 1.5.

the steady time series around the stable equilibrium
appear. As a result, at a fixed time, there are two
specific locations if the system has two stable equi-
librium, no matter how many series we consider.
However, the amplitude of the response at a spe-
cific frequency may be different when the motion
takes place in different wells.

Based on the fact described in Fig. 3, a numer-
ical method is proposed to predict the bifurcation
shown in Fig. 2. The detailed step to carry out the
numerical simulation of the bifurcation behavior is
as follows. First, we choose every point in the inter-
val −3:0.06:3 as the initial condition x(0), where
−3 and 3 are the beginning point and end point
of the interval respectively, and 0.06 is the step.

Then, we mark the location at the time 10T , here
T = 2π/ω. In Fig. 4, the fractional-order induced
bifurcation is shown through numerical simulations.
The saddle-node bifurcation is shown in Figs. 4(a)
and 4(c), and the pitchfork bifurcation is shown in
Fig. 4(b). The critical value of the bifurcation is
α = 0.97, 0.75 and 0.97 for the case a = −0.6, 0 and
0.6 respectively. For the analytical results in Fig. 2,
the corresponding bifurcation point is α = 0.96,
0.76 and 0.96. The figure shows that the numerical
results are in good agreement with the analytical
results. It also proves the validity of the analyti-
cal and numerical methods that were used above.
Both in Figs. 2 and 4, for the saddle-node bifurca-
tion, we always have the first stable branch. The
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(a) a = −0.6
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(c) a = 0.6

Fig. 4. Numerical prediction of the fractional-order induced
bifurcation for α for ω2

0 = 1, b = 1, f = 0.05, ω = 0.5,
F = 3 and Ω = 6. In (a) and (c), the saddle-node bifurcation
appears. In (b), the pitchfork bifurcation appears. The initial
condition for each numerical simulation is one point in the
interval −3:0.06:3.

second stable branch appears after the bifurcation
point. While for the supercritical pitchfork bifur-
cation, the first stable branch splits into two sta-
ble branches, then they break away gradually. The
numerical bifurcation diagrams prove the disconti-
nuity of the saddle-node bifurcation and the conti-
nuity of the pitchfork bifurcation again. The idea
of the numerical method in this paragraph is also
applied to calculate the safe basin in the nonlinear
system [Lenci & Rega, 2003; Shang & Xu, 2009].
Certainly, one reason to use this method lies in the
periodic or quasiperiodic property of the time series

response. If the time series is chaotic, the method
may be not valid. As is well known, for chaotic time
series, the locations of different paths at a certain
time are distributed almost in a random manner.

3.2. Role of the asymmetric
parameter on the bifurcation

The analytical prediction of the saddle-node bifur-
cation induced by the asymmetric parameter a is
given in Fig. 5. There are two saddle-node bifur-
cation points in the figure. The first saddle-node
bifurcation point appears at a = −0.21, while the
second one appears at a = 0.21. Specifically, when
the asymmetric parameter a lies in [−0.21, 0.21], the
system has two stable branches constituted by the
equilibrium points X∗

S1 and X∗
S2 respectively.

When a lies in other intervals, the system only
has one stable branch constituted by the equilib-
rium points X∗

S . The diagram is symmetric about
the line X∗ = 0. In this figure, with the increase
of the asymmetric parameter from negative to pos-
itive, the first bifurcation point is the beginning
point of a stable branch and an unstable branch.
The second bifurcation point is the end point of a
stable branch and an unstable branch. For the first
saddle-node bifurcation, an additional stable branch
appears after the bifurcation point. Hence, we con-
sider the first bifurcation as the supercritical case.
Similarly, we think the second saddle-node bifurca-
tion as the subcritical case because an additional
stable branch exists before the second bifurcation
point. The numerical prediction of the saddle-node

−0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

a

X
*

X
S
*

X
U
*

X
S1
*

S
S2
*

X
S
*

Fig. 5. Analytical prediction of the asymmetric parameter
induced saddle-node bifurcation for α = 1.1, ω2

0 = 1, b = 1,
f = 0.05, ω = 0.5, F = 5 and Ω = 6.
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1.5

a

x(
10

T)

Fig. 6. Numerical prediction of the asymmetric parameter
induced saddle-node bifurcation for α = 1.1, ω2

0 = 1, b = 1,
f = 0.05, ω = 0.5, F = 5 and Ω = 6. The initial condi-
tion for each numerical simulation is one point in the interval
−3:0.06:3.

bifurcation induced by the asymmetric parameter a
is shown in Fig. 6. For the numerical results, the first
saddle-node bifurcation point appears at a = −0.16
and the second one appears at a = 0.16. In this
figure, the numerical calculations are also in good
agreement with the analytical results, proving the
validity of the numerical method again.

4. Three Kinds of Vibrational
Resonance

The vibrational resonance induced by the high-
frequency signal is the common vibrational reso-
nance [Landa & McClintock, 2000]. It resembles the
common resonance phenomenon known in mechan-
ics. Here, we analyze three kinds of vibrational res-
onance: the vibrational resonance induced by the
high-frequency signal, the asymmetric parameter
and the fractional-order. For numerical simulation,
the response amplitude Q is calculated by the fol-
lowing formula, i.e.

Q =

√
Q2

sin + Q2
cos

f
, (15)

where

Qsin =
2

rT

∫ rT

0
x(t) sin(ωt)dt,

Qcos =
2

rT

∫ rT

0
x(t) cos(ωt)dt.

(16)

Herein, T = 2π/ω and r is a positive integer which
should be chosen big enough. In the following sim-
ulations, the total time is 200T . After removing the
first 100T as the transient response, we make the
last 100T as the steady response for computation.
The time step is ∆t = 0.01.

4.1. Vibrational resonance induced
by the high-frequency signal

In Fig. 7, the vibrational resonance induced by the
high-frequency signal is shown for different simu-
lation parameters. The double-resonance is shown
in Figs. 7(a) and 7(f), and the single-resonance is
shown in other subplots of Fig. 7. If the equiva-
lent system in Eq. (8) has two stable equilibria,
we substitute X∗∗ = X∗

S1 into Eq. (13) to obtain
Figs. 7(a), 7(c), 7(e), and we substitute X∗∗ = X∗

S2
into Eq. (11) to obtain Figs. 7(b), 7(d), 7(f). Or
else, we substitute the only stable state X∗∗ = X∗

S
into Eq. (13) to obtain the analytical result of
the response amplitude. Apparently, the analyti-
cal curve in Fig. 7(a) is the same with the one in
Fig. 7(f). The analytical curve in Fig. 7(b) is con-
sistent with that in Fig. 7(e). The two analytical
curves in Figs. 7(c) and 7(d) are completely identi-
cal. For numerical simulations, we let x(0) = −1.5
in Figs. 7(a), 7(c), 7(e) and x(0) = 1.5 in Figs. 7(b),
7(d), 7(f). In fact, it is difficult to assure that the
motion occurs always around the stable equilibrium
X∗∗ = X∗

S1 or X∗∗ = X∗
S in Figs. 7(a), 7(c), 7(e)

and around the stable equilibrium X∗∗ = X∗
S2 or

X∗∗ = X∗
S in Figs. 7(b), 7(d), 7(f). In Fig. 7,

the numerical results equal the analytical results
approximately. One factor leading to the discrep-
ancy between the analytical results and the numer-
ical simulations is due to the Grünwald–Letnikov
algorithm being a crude numerical method [Old-
ham & Spanier, 2002]. Especially when α is small,
the discrepancy is slightly big. However, the errors
between the two kinds of results are in an allowable
range.

In Fig. 8, the vibrational resonance phe-
nomenon, the usual one, i.e. induced by the bihar-
monic periodic driving of different frequencies, is
shown for the case α = 1.5. To obtain the analytical
plots in Figs. 8(a), 8(c), 8(e), we suppose that the
motion is taking place around the left stable equi-
librium X∗

S1 when there are two stable equilibria or
around the sole stable equilibrium X∗

S when there
is only one stable equilibrium. To obtain the ana-
lytical plots in Figs. 8(b), 8(d), 8(f), we suppose
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(a) a = −0.6 (b) a = −0.6
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Fig. 7. Vibrational resonance induced by the high-frequency signal for α = 0.5, ω2
0 = 1, b = 1, f = 0.05, ω = 0.5 and Ω = 6.

In (a), (c), (e), x(0) = −1.5; in (b), (d), (f), x(0) = 1.5. The thin lines are the analytical predictions while the thick lines are
the corresponding numerical results.

that the motion takes place around the right stable
equilibrium X∗

S2 or around the sole stable equilib-
rium X∗

S . The agreement of the numerical simula-
tions with the analytical results proves this fact.
The figure also indicates the dependency of the
response amplitude on the initial condition. This
is due to the fact that the initial condition is a
key factor to determine the potential well where the
motion takes place. The depths of the two poten-
tials are different for the asymmetric potential case.
This explains the difference in the response ampli-
tude when the motions occur in different poten-
tial wells. The importance of the initial condition
on the response is shown in both Figs. 7 and 8.

Hence, in the asymmetric system, we need a method
to determine in which potential well the motion
is located in, before we calculate the response
amplitude correctly.

4.2. Vibrational resonance induced
by the fractional-order

In Fig. 9, we see that the response amplitude is
a nonlinear function of the fractional-order α. In
this figure, the bold line is obtained by analyt-
ical predictions under the precondition that the
motion takes place around the stable equilibrium
X∗

S1 or around the sole stable equilibrium X∗
S . The
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Fig. 8. Vibrational resonance induced by the high-frequency signal for α = 1.5, ω2
0 = 1, b = 1, f = 0.05, ω = 0.5 and Ω = 6.

In (a), (c), (e), x(0) = 3; in (b), (d), (f), x(0) = −3. The thin lines are analytical predictions while the thick lines are the
corresponding numerical results.

line with circles is obtained under the precondition
that the motion occurs around the stable equilib-
rium X∗

S2 or around the sole stable equilibrium
X∗

S . When α is treated as a controllable parame-
ter, for numerical calculations under different ini-
tial conditions, it is very difficult to determine in
which potential well the motion is taking place.
This leads to the difficulty in verifying the analytical
results by the numerical simulations. To overcome
this problem, we take the method that we have used
to calculate the bifurcation in Sec. 3. Specifically,
we take one point in the interval −3:0.06:3 as the
initial location x(0) for each numerical simulation.

Among all different paths, some move around the
left equilibrium point and others move around the
right equilibrium point when there are two stable
equilibrium points. Or else, the motions are around
the sole stable equilibrium point. In a short time,
the paths that move around the same equilibria
achieve a complete synchronization state. Moreover,
the coincident paths have the same amplitude in
the response series. Hence, it is feasible to numeri-
cally simulate the vibrational resonance under dif-
ferent initial conditions. In Fig. 9(a), for the case
a = −0.6, the double-resonance occurs when the
motion takes place around the left equilibrium X∗

S1
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Fig. 9. Vibrational resonance induced by the fractional-
order α for ω2

0 = 1, b = 1, f = 0.05, ω = 0.5 and Ω = 6.
The bold line and the line with circles are obtained by the
analytical predictions while the discrete points are the cor-
responding numerical results. The initial condition for each
numerical simulation is one point in the interval −3:0.06:3.

or around the sole stable equilibrium X∗
S while

the single-resonance appears when the motion is
around the right equilibrium X∗

S2 or around the sole
stable equilibrium X∗

S . In Fig. 9(b), for the case
a = 0, the potential is symmetric and the curve
only has a single peak. In Fig. 9(c), for the case
a = 0.6, the double-resonance occurs when the
motion occurs around the right equilibrium X∗

S2
or around the sole stable equilibrium X∗

S , while

the single-resonance appears when the motion is
around the left equilibrium X∗

S1 or around the sole
stable equilibrium X∗

S . In Fig. 9, the asymmetric
parameter a results in the double-resonance occur-
ring in the Q−α plot. Furthermore, another pre-
diction for the double-resonance occurring in Fig. 9
is that the motion should be in the shallow poten-
tial well. This subsection shows that the vibrational
resonance also appears when the excitation is fixed
and the fractional-order is varying.

4.3. Vibrational resonance induced
by the asymmetric parameter

The parameter-induced stochastic resonance is
known to occur in nonlinear systems [Duan &
Xu, 2003]. Since vibrational resonance is a similar
phenomenon, one may wonder whether vibrational
resonance might also be induced by changing a
parameter in a nonlinear system. The answer is
given in Fig. 10. In this figure, the bold line is
obtained by analytical predictions under the pre-
condition that the motion takes place around the
stable equilibrium X∗

S1 or around the sole stable
equilibrium X∗

S . The line with circles is obtained
by analytical predictions under the precondition
that the motion occurs around the stable equilib-
rium X∗

S2 or around the sole stable equilibrium X∗
S .

When the asymmetric parameter a increases from
negative to positive, the vibrational resonance
occurs, no matter around which stable equilibrium

−0.4 −0.2 0 0.2 0.4 0.6
0.5

1

1.5

2

2.5

a

Q

Fig. 10. Vibrational resonance induced by the asymmetric
parameter a for α = 1.1, ω2

0 = 1, b = 1, f = 0.05, ω = 0.5,
F = 5 and Ω = 6. The bold line and the line with circles
are obtained by the analytical predictions while the discrete
points are the corresponding numerical results. The initial
condition for each numerical simulation is one point in the
interval −3:0.06:3.
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the motion takes place. The two diagrams of the
response amplitude are symmetric about the line
a = 0. The resonance occurs at the point a = −0.21
(analytical result), a = −0.16 (numerical result),
a = 0.16 (numerical result) and a = 0.21 (ana-
lytical result), when the motion occurs around dif-
ferent equilibria. Moreover, from Figs. 5 and 6,
we know that these values of a are just the crit-
ical points of the saddle-node bifurcation. There-
fore, the resonance occurs at the bifurcation point.
A detailed discussion of the resonance condition
in a fractional system can be found in [Yang &
Zhu, 2012]. From our previous work, we know
that only when the denominator in Eq. (13), i.e.√

(ωα cos απ
2 − ω2

r)2 + (ωα cos απ
2 )2 = 0, does not

have a real root, then the single-resonance behavior
appears as shown in Fig. 10. From Fig. 10, we also
know that the vibrational resonance can be induced
by the asymmetric parameter in a fractional system
under fixed excitations.

5. Conclusions

The saddle-node bifurcation and vibrational reso-
nance are investigated in a fractional system which
has an asymmetric bistable potential. The bifur-
cation and resonance can be predicted by the
analytical and numerical analysis. For numerical
simulations, the time series closely depends on the
initial condition. To solve this technical problem,
a method is proposed to investigate the bifurca-
tion and resonance phenomenon. Specifically, we
choose a series of initial conditions which make the
response realize all possible paths. If so, on the one
hand, all possible locations can be reached at a fixed
time. Based on this idea, we analyze the bifurcation.
On the other hand, all time series simulated under
different initial conditions can achieve all possible
response amplitudes. Hence, the vibrational reso-
nance is numerically calculated in an effective man-
ner. The numerical results are in good agreement
with the analytical ones, proving the validity of the
analytical and numerical analysis.

If the fractional-order is a controllable param-
eter, the fractional-order induces a saddle-node
bifurcation when the asymmetric parameter exists.
The fractional-order induces a supercritical pitch-
fork bifurcation when the asymmetric parameter
vanishes. If the asymmetric parameter is treated
as a variable, there might exist two saddle-node
bifurcations. The first bifurcation point and the
second bifurcation point are symmetric around the

origin. The first saddle-node bifurcation occurs
behind the bifurcation point. It is a supercritical
case. The second saddle-node bifurcation occurs
before the bifurcation point. It is a subcritical case.

The response amplitude of the output depends
on which potential well the motion takes place. It
arises from the asymmetric property of the poten-
tial function. There are three kinds of vibrational
resonance in the fractional system. The first one is
induced by the high-frequency signal. The second
one is induced by the fractional-order. The third
one is induced by the asymmetric parameter. Hence,
we have three ways to make the vibrational reso-
nance to occur in the fractional system. Moreover,
the numerical method proposed in this paper might
be useful in studying the bifurcation phenomena in
nonlinear systems.
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