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Abstract

We analyze the vibrational resonance in the Duffing oscillator system in the presence of (i) a

gamma distributed time-delayed feedback and (ii) integrative time-delayed (uniformly distributed

time delays over a finite interval) feedback. Particularly, applying a theoretical procedure we obtain

an expression for the response amplitude Q at the low-frequency of the driving biharmonic force.

For both double-well potential and single-well potential cases we are able to identify the regions in

parameter space where either (i) two resonances, (ii) a single resonance or (iii) no resonance occur.

Theoretically predicted values of Q and the values of a control parameter at which resonance occurs

are in good agreement with our numerical simulation. The analysis shows a strong influence of

both types of time-delayed feedback on vibrational resonance.
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I. INTRODUCTION

Time-delay is thought to be ubiquitous in many realistic models in physics, engineering

and biology. When the state of a system at time t depends on its state values at previous

past time, then a time-delayed feedback term is introduced in the evolution equation of

the system. We can think about two main types of time-delays: discrete time-delays and

distributed time-delays [1]. In the present work we are concerned with distributed time-

delays.

The general form of a distributed delay feedback term (DFT) in a dynamical system is

given by

DFT =

∫ ∞

0

G(τ)x(t− τ) dτ, (1)

where x is a state variable of the system and G(τ) is a distributed delay kernel with G(τ) ≥ 0

and
∫∞

0
G(τ) dτ = 1. The choice G as the Dirac-delta distribution δ(τ − α) gives

DFT =

∫ ∞

0

δ(τ − α)x(t− τ) dτ = x(t− α), (2)

that is, the delay time is a constant. The G(τ) being

Gu(τ) =







1/α, τ ∈ [0, α]

0, otherwise
(3)

leads to DFT = (1/α)
∫ α

0
x(t− τ) dτ which under a change of variable t− τ = t′ becomes

DFT =
1

α

∫ t

t−α

x(t′) dt′. (4)

The kernel in this case is uniformly distributed and the delay feedback term given by Eq. (4)

is known as an integrative time-delay term [2–5]. The parameter α represents the width and

amplitude of the uniform distribution Gu. The mean and variance of the time-delay in the

distribution Gu is α/2 and α2/12, respectively. α can be treated as the response time of a

system. The integrative time delay was earlier considered in the ‘integrate-and-fire’ models

[2] and self-organized criticality [3]. This time-delay gives rise to amplitude death [4, 6, 7]

in coupled oscillators and multiple resonance curves with and without hysteresis [5].

Another form of distributed delays which is shown to have a strong influence on the

dynamics of a system is the gamma distribution of delays given by

Gg(τ) =
τ p−1αpe−ατ

Γ(p)
, (5)
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where α, p ≥ 0 and Γ(p) is the Euler gamma function. For p = 1 the distribution Gg becomes

an exponential distribution. For the gamma distribution 〈τ〉 = p/α while σ2 = p/α2.

The effect of distributed delays has been reported in a multitude of scientific problems.

Among them, we refer on stability [8–10] and emergence of chaos [11] in neural networks,

Hopf bifurcation and stabilization of a fixed point in a discrete logistic model [12], amplitude

death in coupled oscillators [13, 14], global asymptotic behavior of a chemostat model sys-

tem [15], existence of wavefront solutions in reaction diffusion systems [16, 17], bifurcation

analysis in an epidemic model [18], transmission dynamics of malaria [19], dynamics of car-

following model [20], first passage time statistics [21] and stochastic process in a Langevin

equation [22].

Studies of different nonlinear phenomena in time-delayed systems have received a great

interest in recent years. And the main goal of this paper is to investigate the role of gamma

distributed time-delayed and integrative time-delayed feedbacks on the vibrational resonance

produced in a Duffing oscillator, taken as the reference model system. Vibrational resonance

is a resonant dynamics induced at the low-frequency ω of the input periodic signal by a

relatively high-frequency of the input signal [23–25]. The effect of a single constant and

multiple constant time-delays on vibrational resonance has been previously reported [26–

29]. When the delay time is not constant or not priorly known, then it is more realistic to

consider distributed delays, and this is what we do here.

The paper is organized as follows. In sec. 2 we consider the Duffing oscillator driven by a

biharmonic force with two frequencies ω and Ω with Ω ≫ ω and with a gamma distributed

time-delayed feedback term. We denote γ as the strength of the feedback term. A gamma

distributed time-delayed feedback is characterized by parameters γ, α and p (refer Eq. (5)).

Assuming that the actual motion of the system consists of a slow motion and a fast motion

and applying a theoretical method, we construct an analytical expression for the response

amplitude Q (ratio of the amplitude of the slow motion of the output and the amplitude of

the low-frequency component of the input biharmonic driving force). We analyze the double-

well potential and the single-well potential cases separately. We treat the amplitude g of the

high-frequency force as a control parameter. From the obtained theoretical expression of

Q, we obtain the expression for g at which resonance occurs. For the double-well potential

case, we identify the regions in the (γ, p) parameter space where either two resonances or

just one resonance occur. We point out the mechanism of occurrence of the resonance in
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terms of the resonant frequency. In the single-well case, we show that at most only one

resonance can occur. We identify the conditions on γ and p for a single resonance and no

resonance. We show that all the theoretical results are in good agreement with our numerical

simulations. In sec. 3 we analyse the influence of the integrative time-delayed feedback term

in the Duffing oscillator. The integrative time-delayed feedback term is characterized by

the time-delay parameter α (Eq. (4)) and the strength γ of the feedback. For this feedback

type, we are also able to obtain a theoretical expression for Q. We report the effect of the

parameters γ and α on vibrational resonance in detail for both, the double-well potential and

the single-well potential system separately. The final section contains concluding remarks.

II. DUFFING OSCILLATOR WITH A GAMMA DISTRIBUTED TIME-

DELAYED FEEDBACK

The dynamics of the Duffing oscillator subjected to a biharmonic force and a gamma

distributed time-delayed feedback term is governed by the equation of motion

ẍ+ dẋ+ ω2
0x+ βx3 + F (τ, x(t− τ)) = f cosωt+ g cos Ωt, (6)

where Ω ≫ ω and F is the gamma distributed time-delayed feedback term given by

F (τ, x(t− τ)) = γ

∫ ∞

0

Gg(τ) x(t− τ) dτ (7)

with Gg(τ) given by Eq. (5). For simplicity, we fix α = 1.

A. Theoretical Estimation of the Response Amplitude

We can determine the solution of (6) in the long time limit for Ω ≫ ω by writing

x(t) = X(t) + ψ(t,Ωt) where X and ψ are the slow and the fast variables, respectively, and

〈ψ〉 = (1/2π)
∫ 2π

0
ψ dτ = 0. The evolution equations for X and ψ are

Ẍ + dẊ +
(

ω2
0 + 3β〈ψ2〉

)

X + β
(

X3 + 〈ψ3〉
)

+F (τ,X(t− τ)) = f cosωt, (8a)

ψ̈ + dψ̇ + ω2
0ψ + 3βX2ψ + 3βX

(

ψ2 − 〈ψ2〉
)

+β
(

ψ3 − 〈ψ3〉
)

+ F (τ, ψ(Ωt− Ωτ)) = g cosΩt. (8b)
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As ψ is a rapidly varying function of time, it is reasonable to approximate Eq. (8b) as

ψ̈ + F (τ, ψ(Ωt− Ωτ)) = g cosΩt. (9)

For t→ ∞, we assume the solution of Eq. (9) as AH cos(Ωt+φ). The second term in Eq. (9)

is then worked out as (for details see Appendix A)

F (τ, ψ(Ωt− Ωτ)) = AHΩ−p cos(Ωt + θ + φ), (10a)

where

θ =
p

Ω
− pπ

2
. (10b)

Substituting ψ = AH cos(Ωt + φ) and F given by Eq. (10a) in Eq. (9), we obtain

AH =
g

µ
, µ =

[

(

Ω2 − γΩ−p cos θ
)2

+
(

γΩ−p sin θ
)2
]1/2

, (11a)

φ = tan−1

(

γΩ−p sin θ

Ω2 − γΩ−p cos θ

)

. (11b)

Further, 〈ψ〉 = 0, 〈ψ2〉 = (1/2π)
∫ 2π

0
ψ2 dτ = A2

H/2 and 〈ψ3〉 = 0. Then the equation of

motion of the slow variable X given by Eq. (8a) becomes

Ẍ + dẊ + C1X + βX3 + F (τ,X(t− τ)) = f cosωt, (12)

where C1 = ω2
0 + 3βg2/(2µ2).

Slow oscillations occur about the equilibrium points X∗ of Eq. (12) with f = 0. To

determine X∗, we write X(t−τ) = X(t) = X∗. In this case F in Eq. (12) is simply γX∗ since
∫∞

0
τ p−1e−τdτ = Γ(p). The equilibrium points are X∗

0 = 0, and X∗
± = ±

√

−(C1 + γ)/β.

For convenience, we introduce the change of variable Y = X −X∗ and obtain

Ÿ + dẎ + ω2
rY + 3βX∗Y 2 + βY 3 + F (τ, Y (t− τ)) = f cosωt, (13)

where ω2
r = C1 + 3βX∗2. ωr is termed as the resonant frequency of the slow motion. For

|f | ≪ 1 and |Y | ≪ 1 we can drop the nonlinear terms in Eq. (13) and write its solution in

the limit t → ∞ as Y = AL cos(ωt + Φ). For this solution, referring to the Eqs. (A.1) and

(A.3), the distributed delays feedback term F is written as

F = Re

[

γALe
i(ωt+Φ)

(1 + iω)p

]

. (14)

5



In Eq. (A.3) of Appendix A, the term 1/(1 + iΩ)p is approximated as i−pΩ−p eip/Ω assuming

that Ω ≫ 1. We cannot use this kind of approximation in Eq. (14) because ω can be < 1.

However, defining a + ib = 1/(1 + iω)p, we rewrite Eq. (14) as

F = γAL [a cos(ωt+ Φ)− b sin(ωt+ Φ)] . (15)

Following the procedure used to determine AH, we obtain

AL = f/
√
S, S =

(

ω2
r − ω2 + γa

)2
+ (dω + γb)2 . (16)

Then, we define the response amplitude Q = AL/f = 1/
√
S.

B. Resonance Analysis

We analyse the occurrence of a resonance in both the double-well and the single-well

potentials of the system. The potential of the system in absence of damping, feedback term

and the external periodic force is of a double-well form for ω2
0 < 0, β > 0 and of a single-well

form for ω2
0, β > 0.

We numerically compute Q, to verify the theoretical expression Q. For this purpose, we

integrate Eq. (6) using the Euler method with step size 0.01. Leaving the solution corre-

sponding to first 103 drive cycles as a transient, we compute the sine and cosine components

of Q, denoted as Qs and Qc, respectively, using the formula

Qs =
2

nT

∫ nT

0

x(t) sinωt dt, (17a)

Qc =
2

nT

∫ nT

0

x(t) cosωt dt, (17b)

where n = 103 and T = 2π/ω. Then, Q =
√

Q2
s +Q2

c

/

f .

For the case of the double-well potential system, we fix the values of the parameters as

d = 0.5, ω2
0 = −1, β = 1, f = 0.1, ω = 1, Ω = 10 and p = 0.5. In Fig. 1a both theoretically

and numerically calculated Q are plotted as a function of the control parameter g for three

fixed values of γ. The theoretical Q closely matches with the numerically computed Q.

For a wide range of values of g, the response amplitude for γ = 0.1 is higher than that of

Q(γ = 0) , while Q(γ = −0.1) < Q(γ = 0). In Fig. 1a Q becomes maximum at two values

of g. In order to capture the mechanism of the observed vibrational resonance in Fig. 1b,
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FIG. 1: (a) Q versus g for different values of γ for the system (6) with a double-well potential.

The continuous and dashed lines are theoretical and numerical results, respectively. (b) ω2
r as a

function of g. The horizontal dashed line corresponds to ω2 − γa. The two solid circles mark the

values of g at which resonance occurs. The values of the parameters of the system (6) are d = 0.5,

ω2
0 = −1, β = 1, f = 0.1, ω = 1, Ω = 10, and p = 0.5.

the variation of ω2
r = C1 + 3βX∗2 with g is shown for γ = 0.1. For g < gc, where

gc =

[

2µ2

3β

(

|ω2
0| − γ

)

]1/2

, γ < |ω2
0|, (18)

there are three equilibrium points X∗
0 = 0 and X∗

±. Slow oscillations take place about X∗
±.

For g > gc there is only one equilibrium point X∗
0 and a slow motion occurs about it. In the

calculation of ω2
r , we used X∗ = X∗

± = ±
√

−(C1 + γ)/β for g < gc and X∗ = X∗
0 = 0 for

g > gc.
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In the expression for AL given in Eq. (16) when g is varied, the quantity ω2
r alone varies

while all other terms remain the same. We notice that Q or AL becomes a maximum when

the quantity S becomes a minimum. This happens whenever ω2
r matches with ω2 − γa. In

Fig. 1b for γ = 0.1 as g increases from 0 the value of ω2
r decreases from 2|ω2

0| − 3γ = 1.7

and becomes the minimum value −γ at g = gc. When g is further increased, ω2
r increases

monotonically. At two values of g, denoted as g(1)
VR

and g(2)
VR
, ω2

r = ω2 − γa (marked by the

horizontal dashed line in Fig. 1b). At these values of g, the response amplitude attains the

maximum value 1/(dω + γb). For γ = 0.1, the theoretical values of g(1)
VR

= 51 and g(2)
VR

= 113,

while the numerically predicted values are 47 and 112, respectively. Q becomes a minimum

at g = gc at which ω
2
r is minimum and the number of equilibrium points changes from three

to one. Essentially, at this value of g(= gc) the effective potential of the slow variable X

changes from a double-well form to a single-well.

From the theoretical expression of Q, it is possible to determine the values of g at which

resonance occurs. From Eq. (16) we infer that Q becomes maximum when dS/dg = 0. This

condition leads to the following results.

(i) Resonance occurs at

g(1)
VR

=

[

µ2

3β

(

2|ω2
0| − ω2 + γ(a− 3)

)

]1/2

< gc, (19a)

g(2)
VR

=

[

2µ2

3β

(

|ω2
0|+ ω2 − γa

)

]1/2

> gc (19b)

provided

γc1 =
ω2

a− 1
< γ < γc2 =

2|ω2
0| − ω2

3− a
. (20)

This condition assures that gc > 0, g(1)
VR
, g(2)

VR
> 0 and g(1)

VR
< gc < g(2)

VR
. The first resonance

takes place at a value of g(= g(1)
VR
) < gc while the second resonance is at an another value

g(2)
VR

> gc. At g = gc the response amplitude attains a local minimum. The resonances g(1)
VR

and g(2)
VR

given by Eqs. (19) are due to the matching of ω2
r with ω2 − γa.

(ii) For γ > γc2 there is only one resonance at g = g(1)
VR

= gc. Here, the maximum value

of Q at g = gc is due to the local minimization of the function S in Eq. (16) for which

ω2
r − ω2 + γa 6= 0.

(iii) For γ < γc1 only one resonance is possible and it takes place at g(2)
VR
. Fig. 2 presents the

influence of the parameters γ and g on Q for four fixed values of the parameter p appearing

in the gamma distributed delays ( Eqs. (7) and (5). For p = 0.5, the conditions (20) are
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FIG. 2: Variation of Q as a function of γ and g for four fixed values of p. The values of the other

parameters are as in Fig. 1.

satisfied for γ ∈ [−4.49843, 0.42857]. That is, two resonances can occur when g is varied

from a small value for values of γ in the above interval. Fig. 2a confirms this. For p = 3.5

two resonance peaks can take place for γ ∈ [−0.78, 0.31]. In Fig. 2, for all values of p the

values of Q at resonance decrease with a decrease in the value of γ from the value 1. As γ

increases from γc1, both g
(1)
VR

and g(2)
VR

move away from gc.

In Fig. 3a the variation of γc1 and γc2 with p is plotted. In the stripped regions two

resonances occur. For the values of γ and p above the curve γc2, there is only one resonance

at g = g(2)
VR

> gc given by Eq. (19b) while for below the curve γc1 a single resonance occurs

at g = gc. The Figs. 2 and 3a clearly demonstrate the strong influence of the parameters of

the delay feedback term. In Fig. 3b theoretical and numerically computed g
VR

are shown for

a range of values of γ with p = 0.5. The theoretical g
VR

matches closely with the numerical

g
VR

for |γ| < 1. For |γ| > 1 the deviation between the theoretical g
VR

and the numerical g
VR

increases with an increase in |γ|.
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FIG. 3: (a) γc1 and γc2 versus p for the double-well potential Duffing oscillator. Two resonances

take place in the stripped region while only one resonance occurs in the remaining regions. (b) g
VR

versus γ for p = 0.5. The continuous curve and the solid circles are theoretically and numerically

computed values of g
VR

, respectively.

Figure 4 depicts the change in the slow motion X(t) as a function of g, computed by

solving Eq. (12) for the values of the parameters used in Fig. 1 with γ = 0.1. For p = 0.5

and γ = 0.1, the values of g(1)
VR
, gc and g(2)

VR
are 47, 78, and 112, respectively. For g < gc

there are two orbits with one centered at X∗
+ and another centered at X∗

− (not shown in

Fig. 4). The Q of both orbits are the same. In Fig. 4, the orbits numbered as 1, 2 and 3 are

for g = 1, 25 and 47(= g(1)
VR
). These are the orbits with X∗

+ as the center. The orbits with

X∗
− as the center are not shown in Fig. 4. We can clearly see that Q of the orbit-3 is the

maximum. Further, X∗
+ (the center of the orbit) moves towards origin with increase in the

value of g. At g = gc = 78, the center of the orbit (orbit-4) becomes X∗
0 = 0. As g increases

further, the center of the orbit remains the same, however, Q increases, reaches a maximum
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FIG. 5: Variation of Q with ω in the absence of time-delayed feedback and high-frequency force

for the single-well Duffing oscillator with d = 0.5, ω2
0 = 1, β = 1 and f = 0.1.

at g = g(2)
VR

= 112 (orbit-5) and then decreases (orbit-6 with g = 185).

Next, consider the system (6) with a single-well potential (ω2
0, β > 0). In absence of delay

and an external periodic force, the system (12) has only one real equilibrium point X∗
0 = 0.

The theoretical expression for g
VR

is given by

g
VR

=

[

2µ2

3β

(

ω2 − ω2
0 − γa

)

]1/2

. (21)

At most one resonance is possible for ω2−ω2
0−γa > 0 and no resonance for ω2−ω2

0−γa ≤ 0.

Fig. 5 shows Q versus ω for γ = 0, g = 0 with d = 0.5, ω2
0 = 1, β = 1 and f = 0.1. This figure

shows the typical nonlinear resonance due to the applied single frequency periodic force. For
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FIG. 6: (a) Resonance region (stripped region) in the γ versus p parameter space for the single-well

Duffing oscillator with d = 0.5, ω2
0 = 1, β = 1, f = 0.1, Ω = 10 and ω = 2. (b) Q versus g for four

fixed values of γ with p = 0.5.

a range of values of ω, the response amplitude Q is much lower than its value at resonance.

For example, at ω = 2 the value of Q = 0.31623 is lower than the value Q = 2.06527

corresponding to ω = ωmax = 0.94. The value of Q at ω = 2 can be enhanced and resonance

can also be realized by including the time-delayed feedback and the high-frequency force.

From Eq. (21) the condition for resonance for ω2
0 = 1 and ω = 2 is 3 − γa > 0. If a > 0

(a < 0), then a resonance occurs only for γ < γc1 = 3/a (γ > γc2 = −3/|a|). Fig. 6a depicts

the plot of γc1 and γc2. In the stripped region a resonance can takes place. For p = 0.5, the

value of a is 0.56886 and hence a resonance can occur, when g is varied for γ < γc1 = 5.27371.

In Fig. 6b for γ = 0, and ±0.5 a resonance occurs. For γ = 6 > γc1 when g is increased

from zero, the response amplitude monotonically decreases with an increase in g as shown

in Fig. 6b and there is no resonance. In the single-well case also a resonance occurs when

12



ω2
r = ω2 − γa (Eq. (16)), where ω2

r = C1 = ω2
0 + 3βg2/(2µ2). Unlike the double-well system

the center of the slow motion (X(t)) and the actual motion (x(t)) always takes place about

the origin.

III. INTEGRATIVE TIME-DELAYED DUFFING OSCILLATOR

In this section we present the results of the investigation of the vibrational resonance

in the Duffing oscillator system with an integrative time-delayed feedback term given by

Eq. (4).

A. Theoretical Response Amplitude

We follow the theoretical procedure applied for the system with a gamma distributed

time-delayed feedback with x(t) = X(t) + ψ(t,Ωt). We obtain the following results:

Y (t) = AL cos(ωt+ Φ), (22a)

AL =
f√
S
, Q =

1√
S
, (22b)

S =
[

ω2
r −

(

ω2 − γ

ωα
sinωα

)]2

+
[

dω − γ

ωα
(1− cosωα)

]2

, (22c)

ω2
r = C1 + 3βX∗2, C1 = ω2

0 +
3βg2

2µ2
, (22d)

X∗ = 0, ±
√

−(C1 + γ)/β , (22e)

µ2 =
[

ω2
0 − Ω2 +

γ

Ωα
sinΩα

]2

+
[

dΩ− γ

Ωα
(1− cos Ωα)

]2

. (22f)

Notice the difference between the S’s given by Eqs. (16) and (22c). Since the solution Y (t)

is assumed to be periodic with period 2π/ω, we choose 0 < α < 2π/ω.

B. Double-Well Potential System

For ω2
0 < 0, β > 0 and γ < |ω2

0| the values of g at which the number of equilibrium points

changes from three to one and the resonance occurs are given by

gc =

[

2µ2

3β

(

|ω2
0| − γ

)

]1/2

(23)
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and

g(1)
VR

=

[

µ2

3β

(

2|ω2
0| − 3γ − ω2 +

γ

ωα
sinωα

)

]1/2

< gc, (24)

g(2)
VR

=

[

2µ2

3β

(

|ω2
0|+ ω2 − γ

ωα
sinωα

)

]1/2

> gc. (25)

For two resonances to occur the condition on γ is γc1 < γ < γc2 where

γc1 = − ω2

1− 1
ωα

sinωα
, γc2 =

2|ω2
0| − ω2

3− 1
ωα

sinωα
. (26)

When γ > γc2, only one resonance is possible with the corresponding g
VR

given by g(2)
VR
. For

γ < γc1 there will be only one resonance at g = gc.

Figure 7a depicts the threshold curves γc1 and γc2 for ω2
0 = −1, β = 1, d = 0.5, f = 0.1,

ω = 1 and Ω = 10. In the stripped region, two resonances occur while only one resonance

occurs in the remaining region. In Fig. 7b, both theoretically predicted and numerically

computed g(1)
VR

and g(2)
VR

are plotted as a function of γ for α = 1. Here again, the theoretical

result closely matches with the numerical simulation.

For α = 1, we find γc1 = −6.308 and γc2 = 0.46394. Two resonances are possible for

−6.308 < γ < 0.46394 and only one resonance can occur outside this interval of γ, when g

is varied. When γ = 0.2, ω2
r is equal to ω2 − (γ sinωα)/ωα at two values of g, namely at

g = 43.5 and g = 113.55. At these two values of g, Q becomes maximum. ω2
r matches with

ω2 − (γ sinωα)/ωα at only one value of g for γ = 0.5 and hence only one resonance. Here,

the resonance occurs at g = 103.5 > gc = 59.

The influence of the parameters g and γ on Q is depicted in Fig. 8 for four fixed values

of time-delay α. In this figure, we clearly notice that for γ values below a critical value

(γc1) only one resonance takes place. Comparing the Fig. 2 of the gamma distributive time-

delayed feedback case and Fig. 8 of the integrative time-delayed feedback case, the effect of

α is found to be similar to that of p.

C. Single-well Potential System

For the single-well potential case (ω2
0, β > 0), the slow motion takes place about the

equilibrium point X∗ = 0 and the theoretically predicted g
VR

is

g
VR

=

[

2µ2

3β

(

−ω2
0 + ω2 − γ

ωα
sinωα

)

]1/2

. (27)
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FIG. 7: (a) Dependence of γc1 and γc2 with the time-delay α for the system (6) with an integrative

time-delayed feedback term. Here d = 0.5, ω2
0 = −1, β = 1, f = 0.1, ω = 1 and Ω = 10. Two

resonances occur in the stripped region. Below and above the stripped region only one resonance is

possible. (b) Theoretically predicted (continuous curve) and numerically computed (solid circles)

values of g(1)
VR

and g(2)
VR

for α = 1 as a function of the parameter γ.

From (27), we find the condition for resonance as

− ω2
0 + ω2 − γ

ωα
sinωα > 0. (28)

We fix d = 0.5, ω2
0 = 1, β = 1, f = 0.1, ω = 2 and Ω = 10. In this case, when g is varied Q

can exhibit a resonance only if

γ < γc1 =
6α

sin 2α
, α ∈ [0, π/2] (29a)
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FIG. 8: Q versus g and γ for four fixed values of α for the double-well system (6) with an integrative

time-delayed feedback term.

or

γ > γc2 =
−6α

| sin 2α| , α ∈ [π/2, π] . (29b)

where the range of α is restricted to [0, 2π/ω] = [0, π]. The threshold curves γc1 and γc2 are

plotted in Fig. 9a. In the stripped region, only one resonance can occur. In the remaining

set of values of γ and α, the integrative time-delay suppresses the existing resonance for

γ = 0. When α = 0.2 < π, the theoretically predicted γc1 = 3.08, while the numerically

computed γc1 = 3.04. In Fig. 9b both theoretically and numerically calculated Q are shown

for four values of γ. For γ = ±1 < γc1, Q displays a single resonance. For γ = 4 > γc1, the

response amplitude monotonically decreases with g and there is no resonance.
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FIG. 9: (a) Single resonance region (stripped region) and no resonance region (blank region) for

the single-well potential of the system (6) with an integrative time-delayed feedback term. γc1 and

γc2 are given by Eqs. (25). Here ω2
0 = 1 and ω = 2. (b) Q versus g for four fixed values of γ with

α = 0.2. The continuous and dashed lines are theoretically and numerically computed values of Q,

respectively.

IV. CONCLUSIONS

In this paper, we have analyzed the influence of distributed time-delays and integrative

time-delays on vibrational resonance for the Duffing oscillator, by using a theoretical ap-

proach. Using the approximate analytical expression for the response amplitude, we have

been able to determine the parameter regions (describing the time-delayed feedback) where

either two resonances, one single resonance or no resonance occur. An enhanced response is

realized for a range of values of the control parameters of the feedback. With and without
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time-delayed feedback at most two resonances and at least one resonance occur in the case of

the double-well Duffing oscillator. In the single-well case, at most one resonance is possible.

Suppression of this single resonance by time-delayed feedback happens for a range of values

of the parameters. Thus, the time-delayed feedback can be used to control the number of

resonances and the value of the response amplitude at the resonance.
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Appendix A:

PROOF OF EQUATION (10a)

We present the details of the evaluation of the term F (τ, ψ(Ωt − Ωτ)) given by Eq. (7)

for ψ = AH cos(Ωt+ φ). Equation (7) with the ψ given above takes the form

F =
γAH

Γ(p)

∫ ∞

0

τ p−1e−τ cos(Ωt + φ− Ωτ) dτ. (A.1)

Using cos θ = Re
(

eiθ
)

the above equation is rewritten as

F = Re

[

γAH

Γ(p)
ei(Ωt+φ)

∫ ∞

0

τ p−1 e−bτ dτ

]

, (A.2)

where b = 1 + iΩ. As the value of the integral in (A.2) is Γ(p)/bp, we have

F = Re

[

γAHe
i(Ωt+φ)

(1 + iΩ)p

]

, (A.3)

= Re

[

γAHe
i(Ωt+φ) i−pΩ−p

(

1− i

Ω

)−p
]

. (A.4)

For Ω ≫ 1,
(

1− i
Ω

)−p ≈
(

e−i/Ω
)−p

= eip/Ω. Then

F = Re
[

γAHΩ
−pei(Ωt+φ+p/Ω)e−ipπ/2

]

= γAHΩ
−p cos(Ωt + φ+ θ), (A.5)

where θ =
p

Ω
− pπ
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