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In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for
energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing,
can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes res-
onate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that
can convert environmental kinetic energy into electrical energy, that is, an energy harvester.
Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequen-
cies, that are not always easy to adjust and change. Here, we study the VR generated by tuning
another parameter that is possible to manipulate when the forcing values depend on the envi-
ronmental conditions. We have investigated the dependence of the maximum response due to
the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have
plotted color coded figures in the space of the two forcing amplitudes, in which it is possible
to appreciate different patterns in the electrical power generated by the system. These patterns
provide useful information on the forcing amplitudes in order to produce the optimal electrical
power.

Keywords : Nonlinear dynamics; optimization; vibrational resonance; energy harvesting.

1. Introduction

It is possible, all around us, to see small but power-
ful electrical devices greedy for energy. In fact, the
performance of the electronic devices has increased
rapidly along with their energy needs, while the
capacity of the batteries has become suddenly
inadequate [Paradiso & Starner, 2005]. Therefore,
powering electronics devices without depending
exclusively on the batteries, but by transforming
the environmental energy into electrical energy,

has grown as an interesting open research field,
called energy harvesting.

In this sense, mechanical vibrations are a possi-
ble and reliable energy source that can be exploited.
In fact, different ideas have been proposed in order
to transform environmental vibration kinetic energy
into electrical energy, like using piezoelectric or elec-
trostatic effects [Anton & Sodano, 2007; Arnold,
2007; Litak et al., 2010], i.e. coupling a mechanical
system as a source to a transduction mechanism.
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Some numerical results [Gammaitoni et al., 2009]
have shown that the bistable energy harvesters are
able to provide more energy in a frequency broad-
band than their linear counterparts, initially pre-
ferred [Roundy et al., 2003]. It means that the
nonlinear oscillators can exploit a wider spectrum
of vibration frequencies, making them more adapt-
able and the best choice as shown in [Friswell et al.,
2011; Borowiec et al., 2014; Haris et al., 2014; Pel-
legrini et al., 2012; Harne & Wang, 2013; Twiefel &
Westermann, 2013].

In scientific literature it is usual to have
the impression that all vibrations are detrimen-
tal because most publicized works discuss vibration
reduction in one form or another. But since we are
discussing about exploiting vibrations as a source
of electrical energy, nonlinear environmental vibra-
tions can be intentionally introduced into designs or
enhanced in amplitude. The final objective is to take
advantage of the benefits and then study by using
mathematical tools for modeling and predicting the
vibrational behaviors. Besides, it is important to
state that vibrations are defined to be linear when
the corresponding force of the potential is linear
(F = −kx) and nonlinear otherwise. Therefore, we
have decided to use nonlinear vibrations, not only
because they are more general and realistic, but also
because energy harvesters are supposed to be small
enough to be contained into electronic devices. That
means that even small vibration amplitudes result
in large consideration within the system. Moreover,
sometimes in kinetic energy harvesting systems, it
can be useful to increment the effect of the vibra-
tions in amplitude in order to produce more energy
[Coccolo et al., 2014].

A phenomenon that can help to achieve this
enhancement is the vibrational resonance (VR)
[Landa & McClintock, 2000], where the resonance
concept is the tendency of a system to oscillate with
greater amplitude at some frequencies rather than
at others. The VR phenomenon appears when a
bistable system with a low (LF) and a high fre-
quency (HF) forcing gives a response amplitude
at the LF that grows until a maximum and then
decreases, while we vary the amplitude of the HF
forcing or the frequency. Other theoretical aspects
of the VR have been developed in [Gitterman, 2001;
Blekhman & Landa, 2004; Zaikin et al., 2002]. The
VR phenomenon can be explained as an amplifica-
tion of the LF signal, due to a reduction of the stiff-
ness of the system induced by the HF force. In other

words, it happens when the low frequency signal
is able to induce cross-well transitions. So far, this
phenomenon has been thoroughly studied in a large
class of dynamical systems [Gandhimathi et al.,
2006; Daza et al., 2013; Jayakumari et al., 2009;
Deng et al., 2009; Rajasekar et al., 2011], among
others. In [Coccolo et al., 2014], we have studied the
influence of this phenomenon on a Duffing oscilla-
tor driven by a bi-harmonic excitation, focusing our
work on the effects of VR in harvesting systems.
Following the same path, we have decided to study
a bistable oscillator, studied in [Cottone et al., 2009;
Gammaitoni et al., 2009; Vocca et al., 2012] numer-
ically and experimentally, driven by a HF and LF
forcing, in which the double well potential is given
by the repulsion of an external and an internal mag-
net situated as shown in Fig. 1. In this case, the two
forcings simulate environmental vibrations and we
analyze their interaction in order to exploit the VR
phenomenon by tuning a different parameter value
of ∆, which is the distance between the magnets (see
Fig. 1). Accordingly, we have focused our attention
on the power generated by the system by producing
a two-dimensional map with an appropriate color
code, that associates to every LF and HF forcing
pair (F, f) a different color, that represents a value
of the mean electrical power 〈P 〉. As we will show
later, different patterns can be visualized. To sum-
marize, we will analyze the phenomenon of VR for
different values of the distance between magnets ∆.
Furthermore, we compute the electrical power gen-
erated for different frequencies and amplitudes of
the forcing terms for various values of ∆.

This paper is organized as follows. In Sec. 2, we
describe our prototype model, the bistable nonlin-
ear oscillator which emulates our mechanical sys-
tem. The phenomenon of the VR in our system and
its implications in energy harvesting is described in
Sec. 3. In Sec. 4, we study the response of the aver-
age power of the system in the vibrational resonance
regime. A map of the electrical power response of
the system is described in Sec. 5. A discussion and
the main conclusions of this manuscript are pre-
sented in Sec. 6.

2. The Model

We have chosen for our study the mechanical system
depicted in Fig. 1, which has been studied numer-
ically and experimentally in [Cottone et al., 2009;
Gammaitoni et al., 2009; Vocca et al., 2012]. This
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Fig. 1. The harvester considered has parameter ∆ as the
distance between the magnets, PZT the piezoelectric patch,
R and Cp are the resistance and the capacitor of the coupled
circuit, and the beam displacement is along x-axis.

system can be modeled as a bistable potential and
the equation of motion reads as follows:

mẍ +
dU(x)

dx
+ γẋ + Kvv(t)

= F cos(ωt) + f cos(Ωt), (1)

where U(x) is the potential energy function of the
cantilever with equivalent mass m, x is the vertical
displacement around its mean value, the third term
on the left γẋ, gives the energy dissipation due to
the bending and in the fourth term we have v(t),
the voltage and Kv , the coupling constant of the
piezoelectric sample, so that Kvv(t) gives the energy
transferred to the electric load R with the coupling
equation:

v̇ +
v(t)
τp

− κcẋ = 0, (2)

where κc is the position to voltage coupling coeffi-
cient. The time constant of the piezoelectric dynam-
ics, τp, is related to the coupling capacitance Cp

and to the resistive load R by τp = RCp. Finally,
F cos(ωt) and f cos(Ωt) are the low frequency (LF)
and the high frequency (HF) excitations, respec-
tively. Notice that we have chosen for convenience
F � f as the respective forcing amplitudes, while
ω = 0.5 and Ω are the frequencies, that always have
to satisfy the VR condition Ω � ω. The HF fre-
quency value is Ω = 5 if not indicated otherwise.

The potential energy function in Eq. (1) is given
by:

U(x) =
1
2
Keffx2 + (ax2 + b∆2)−3/2, (3)

with Keff , a and b represent constants related to the
physical parameters of the cantilever. The parame-
ter a is given by a = d2(µ0M

2/2πd)−2/3 where µ0

is the permeability constant, M the effective mag-
netic moment and d = 2.97 a geometrical parameter

Fig. 2. Plot of the potential U(x), given by Eq. (3), for dif-
ferent values of the distance between the magnets ∆ = 0.005,
∆ = 0.007, ∆ = 0.010 and ∆ = 0.02. The rest of the param-
eters are as shown in Table 1, in agreement with [Cottone
et al., 2009; Gammaitoni et al., 2009; Vocca et al., 2012]. All
magnitudes follow the International System of units.

related to the distance between the measurement
point and the cantilever length. The variable b is
written as b = a/d2. The tuning parameter ∆ is
used to move from a monostable potential to a
bistable potential (see Fig. 2). In other words, it is
the distance between the magnet on the top of the
cantilever and the fixed magnet. Later, we will dis-
cuss the influence of this parameter on the electrical
power harvested in the system of Eqs. (1)–(3). We
start, from now on, every simulation from the initial
condition (x0, y0, v0) = (0.001, 0, 0) (y = ẋ), using
a Runge–Kutta integrator [Butcher, 1987] of fourth
order. The parameter values used for the simula-
tions are described in Table 1, according to [Cottone

Table 1. The simulations parameters.

Parameters Description Value

m Cantilever equivalent mass 0.018 Kg
γ Viscous parameter 0.022 kg/s

Kv Piezoelectric coupling 0.0011 N/V
constant

Kc Position to voltage 4.15 × 103 V/m
coupling coeff.

RL Load resistance 300 × 103Ω

C Piezoelectric capacitance 112 × 10−9 F
Keff Cantilever effective elastic 26.6 N/m

constant

M Effective magnetic moment 0.051 Am2

µ0 Magnetic permeability 4π × 10−7H/m
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et al., 2009; Gammaitoni et al., 2009; Vocca et al.,
2012], where a comparison between the numeri-
cal simulations and an experimental apparatus has
been done. We do not clarify the units other than in
Table 1, because they do not change along the arti-
cle. We have decided to study the harvester sub-
jected to continuous vibrations for values of the
amplitudes and frequencies sufficiently sensitive to
a human being, as we can see in [Department of
Environment and Conservation, 2006].

3. The Vibrational Resonance

The first step is the numerical study of the response
of the system defined by Eqs. (1)–(3) for the dis-
placement variable x, and the electrical power P ∝
V 2, where V is the voltage generated by the sys-
tem. When the system has a LF signal of amplitude
F and frequency ω, and a HF signal of amplitude
f � F and frequency Ω � ω, the VR phenomenon
can take place.

The usual procedure to search for VR is to
compute, for different amplitudes f or frequency Ω
[Landa & McClintock, 2000], the Q factor

Q =

√
(C2

s + C2
c)

F
, (4)

where

Cs =
2

nT

∫ nT

0
Γ(t) sin(ωt)dt (5)

Cc =
2

nT

∫ nT

0
Γ(t) cos(ωt)dt (6)

and Γ(t) is, in our case, the displacement x or the
electrical power generated P ∝ V 2, the number of

complete oscillations of the LF signal is n and
T = 2π/ω is its period. The VR occurs, if it is
possible to find a value of f or of Ω that maximizes
the Q factor. This means that a particular value of
the HF periodic signal has been found that opti-
mizes the response of the system to the weak LF
periodic signal. Here, we have explored a different
scenario, where the values of the frequencies and
forcing amplitudes are fixed by the environmental
conditions and we modify only the parameter ∆.

3.1. Vibrational resonance for
small variations in the forcing
amplitudes and frequencies
ratio

We have started our analysis with a value of the
HF forcing amplitude f = 0.1 × 10−2 [as shown
in Figs. 3(a) and 3(b)]. In these figures, the dif-
ferent curves related to different values of the LF
forcing amplitude 0.1 × 10−1 < F < 0.14 × 10−1

show how the peaks detach around the value of
∆ = 0.01. The same behavior happens when we
change the amount of the HF forcing amplitude
f = 0.5 × 10−2 [see Figs. 3(c) and 3(d)], only a
new peak detaches in the curve of F = 0.011 for a
slightly larger ∆ value. Also, we have computed the
same curves for different amounts of frequency Ω, as
shown in Figs. 4(a)–4(d). In Figs. 4(a) and 4(c) we
can see that the peaks detach for the same ∆ value.
However, for a HF forcing value f = 0.5 × 10−2, as
shown in Fig. 4(d), the Q factor for the electrical
power Qv2 shows a different behavior with respect
to Qx and another peak pops up for a slightly
larger value of ∆. The analysis of the previous

(a) (b)

Fig. 3. Figures (a) and (c) plot Qx versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2. Figures (b) and (d) plot Qv2 versus
∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2. All different curves are plotted for different values of F : F = 0.11 × 10−1,
F = 0.12 × 10−1, F = 0.13 × 10−1, and F = 0.14 × 10−1. Note that there is a value of the ∆ parameter that maximizes the
Q factor, showing the occurrence of VR, although it shifts to smaller values when F value increases. In all these curves, we
have used (x0, y0, v0) = (0.001, 0, 0) as the initial condition.
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(c) (d)

Fig. 3. (Continued)

figures shows us that a variation of the experimen-
tal parameter ∆ can generate the VR phenomenon
for which the role of the parameter f is crucial. In
the situation in which VR exists, we have calculated
the value of ∆ for which we have a maximum in the
average electrical power generated by the mechani-
cal system, namely 〈P 〉 ∝ 〈V 2〉. This maximum can
be observed in Fig. 5(a) where we show the values of

〈P 〉 for the case with f = 0.1 × 10−2. On the other
hand, the average electrical power generated by the
mechanical system, for the case with f = 0.5× 10−2,
is shown in Fig. 5(b), where qualitatively its behav-
ior is the same as that in the case of the previous
figure. We can see, as shown in Fig. 3, that the
value of the parameter ∆ for which the peaks are
maximal coincides with the value for which the Q

(a) (b)

(c) (d)

Fig. 4. Figures (a) and (c) plot the Q factor for the position, Qx versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2. It is
possible to see that in both figures the curves do not change significantly when the Ω value increases. Figures (b) and (d)
plot the Q factor for the power Qv2 versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2. Here, the scale changes and also the
shape of the curves. Moreover, a new peak shows up in Fig. 4(d). All different curves are plotted for different values of the HF
frequency Ω. In all these curves, we have used (x0, y0, v0) = (0.001, 0, 0) as the initial condition.
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(a) (b)

(c) (d)

Fig. 5. Figures (a) and (b) plot the average electrical power, 〈P 〉 ∝ 〈V 2〉 versus ∆, for f = 0.1×10−2 and f = 0.5×10−2 for
different values of F . Figures (c) and (d) plot the average electrical power 〈P 〉 versus ∆, for f = 0.1×10−2 and f = 0.5×10−2

for different values of Ω. Figures (a)–(c) show a peak for the same ∆ value, but figure (d) maximum is displaced with respect
to the others and it is in agreement with Fig. 4(d). In all these curves, we have used (x0, y0, v0) = (0.001, 0, 0) as the initial
condition.

factor is also maximum. The last figure, Fig. 5(d),
shows us that the optimal distance ∆ between the
magnets for the VR to occur can depend on the LF
forcing, in fact, a new maximum shows up while Ω
is increasing.

3.2. Vibrational resonance for
larger variations in the forcing
amplitudes and frequencies
ratio

In the previous subsection, we have shown that
for a small difference of the amplitude F and the
frequency Ω of the forcing, the peak of the VR
occurs for almost the same ∆ value. We have also
shown that the maximum in electrical power and
the peaks in the Q factor are related. In this subsec-
tion, we investigate the occurrence of the VR peak
when the variation of the ratio between the two
amplitudes and frequencies of the forcing is larger,

although the vibration values remain in a humanly
acceptable scale. We study the possibility to estab-
lish that there are values of the ∆ parameter that
maximize the system response in electrical power
for given environmental vibrations, even when the
vibrational conditions vary on a larger scale. The
Q factor for the displacement x and the electri-
cal power 〈P 〉 in the cases of different amplitudes
F can be seen in Figs. 6(a)–6(d). In these figures,
we have a similar behavior between them, insofar
as the scale of F increases. On the other hand,
in Figs. 7(a)–7(d), we have changed the frequency
ratio, showing a strong change in the shape of the
curves shown in Figs. 7(c) and 7(d) with respect to
the ones shown in Figs. 7(a) and 7(b). In Figs. 8(a)–
8(e) we attempt to clarify Fig. 7(d) by plotting in
the different panels the shape of the curves for a
shorter range of Ω. In these last figures, we can see
that the peaks are localized in a narrow area of the
figure, typically around the value ∆ = 0.001. When
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(a) (b)

(c) (d)

Fig. 6. Figures (a) and (c) plot the Q factor of the displacement Qx versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2.
Figures (b) and (d) plot the Q factor of the power Qv2 versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2. All different curves
are plotted for different values of F , larger with respect to Figs. 3(a)–3(d). The figures show that the peaks of both Qx and
Qv2 shift as function of F value. In all these curves, we have used (x0, y0, v0) = (0.001, 0, 0) as the initial condition.

(a) (b)

(c) (d)

Fig. 7. Figures (a) and (c) plot the Q factor of the displacement Qx versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2.
Figures (b) and (d) plot the Q factor of the power Qv2 versus ∆, for f = 0.1 × 10−2 and f = 0.5 × 10−2. All different curves
are plotted for different values of HF frequency Ω, larger than Figs. 4(a)–4(d). The figures show that the peaks of both Qx

and Qv2 show different behaviors. (d) For specific ranges of frequency Ω, we have used (x0, y0, v0) = (0.001, 0, 0) as the initial
condition.
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(a) (b)

(c) (d)

(e)

Fig. 8. Figures (a)–(e) plot the curves of Fig. 7(d) for a specific range of the frequency Ω. It is possible to appreciate that
the scale changes abruptly from figures (c) to (d), but differently from Figs. 6(a)–6(d), the peaks are settled around the value
∆ = 0.001. To make the legend easier to read, the position of the Ω values match the ones of Fig. 7(d).

we study the average electrical power 〈P 〉 shown in
Figs. 9(a) and 9(b), we can see that the maximum
electrical power follows the peak of the Qv2 as F
increases, while otherwise in Figs. 9(c) and 9(d) it
does not happen. In particular, we can appreciate
besides the difference in scale, that the maxima in
the electrical power are displaced with respect to
the Qv2 shown in Fig. 7(d). To better visualize the
curves of Figs. 9(c) and 9(d), we have split the two

figures into Figs. 10(a)–10(c) and Figs. 11(a)–11(d)
respectively. Analyzing these figures, we can appre-
ciate some similarity between them, in particular
that for different values of ∆ we have different
maximal responses in electrical power depending
on the HF frequencies Ω. An analysis of the fig-
ures from smaller to bigger ∆ values can be fruit-
ful. It is possible to see that just before the value
∆ = 0.001 the maximum is reached by the curve
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(a) (b)

(c) (d)

Fig. 9. Figures (a) and (b) plot the average electrical power 〈P 〉 ∝ 〈V 2〉 versus ∆, for f = 0.1× 10−2 and f = 0.5× 10−2 for
different values of F . Figures (c) and (d) plot the average electrical power 〈P 〉 versus ∆, for f = 0.1×10−2 and f = 0.5×10−2

for different values of the HF frequency Ω. The figures (a) and (b) show peaks in the generated electrical power 〈P 〉 for the
same values for which the VR occurs, as shown in Fig. 7. The figures (c) and (d) show that the behavior of the electrical power
generated is largely affected by the value of Ω and we lose correlation with the Q factor figures, as we show in detail below.
In all these curves, we have used (x0, y0, v0) = (0.001, 0, 0) as the initial condition.

Ω = 100ω, and for ∆ = 0.001 for lower frequen-
cies, ω ≤ Ω ≤ 50ω. Then, for 0.001 < ∆ < 0.013
the maximum is reached by the curve Ω = 60ω,
for 0.013 ≤ ∆ ≤ 0.016 by the curve Ω = 70ω, and
finally for ∆ ≥ 0.016 by the curve Ω = 80ω. A
discrepancy can be detected for Ω = 50ω, in fact

in Fig. 11(b) a higher peak detaches for a different
value of ∆ than in Fig. 10(b). Indeed, another dif-
ference is the scale of the average electrical power
generated. We want to underline how the f value
can be decisive in order to harvest more energy.
We have generated all these figures with an initial

(a) (b)

Fig. 10. Figures (a)–(d) show details of Fig. 9(c). We observe that the dependence of 〈P 〉 on ∆ takes larger values for
frequencies Ω in the range 60 ≤ Ω/ω ≤ 80.
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(c) (d)

Fig. 10. (Continued)

(a) (b)

(c)

Fig. 11. Figures (a)–(c) show details of Fig. 9(d). In this case, the dependence of 〈P 〉 on ∆ takes larger values for frequencies
Ω in the range 60 ≤ Ω/ω ≤ 90.

condition (x0, ẋ0, v0) = (0.001, 0, 0). We have also
studied the average electrical power generated by
300 different initial conditions, then we have calcu-
lated the mean value and plotted it in as a function
of ∆. The figures generated were not only similar,
but equal to the figures above. This tells us that the
system has a strong robustness towards variations
of the initial conditions.

4. Numerical Analysis of the

Average Electrical Power

of the System

After showing the response of the system as a
function on the parameter ∆, we study the corre-
sponding response as a function of both the forcing
amplitude F/f and the frequency Ω/ω ratios since
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these parameters are crucial in the energy harvested
by the mechanical system.

In Figs. 12(a) and 12(b) it is possible to observe
a maximum for 80 < Ω/ω < 100, also in this case
the magnitude of the peaks of the electrical power
response is very different, due to the value of the
HF forcing amplitude f . Figures 12(c)–12(e) show
the electrical power response of the system for larger
amplitudes where every curve is plotted for different
Ω values. In Fig. 12(c) the response grows in an

oscillatory way and only for F/f ≥ 300 the curve
related to Ω = 80ω detaches and indicates more
generated electrical power than the others. On the
other hand, in Fig. 12(d) we can see that for large
values of F/f , the curve of Ω = 80ω gives a higher
response in the electrical power with respect to the
others. But, if we take a look at Fig. 12(e), that is a
zoom of the previous figure in the region F/f < 100,
for values of the forcing F/f < 50, the maximum
generated electrical power is given by the curve of

(a) (b)

(c) (d)

(e)

Fig. 12. Figures (a)–(e) show the average electrical power 〈P 〉 ∝ 〈V 2〉 versus the ratio Ω/ω and F/f . It is possible to see
that in figures (a) and (b) we have a maximum for values of the HF frequency Ω in the range 80 ≤ Ω/ω ≤ 100. In figures (c)
and (d) we observe that a HF frequency value Ω = 80ω detaches for higher values of the amplitude F . Figure (e) is a zoom of
figure (d), in which the curve Ω = 90ω gives the maximum electrical power for smaller values of the amplitudes.
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Ω = 90ω. To summarize, the largest value of the
response of the system takes place for f = 0.5×10−2

as we can easily observe in Figs. 12(b) and 12(d)
where the maximum occurs for Ω = 80ω.

5. The Map of the Electrical Power
Response of the System

We have seen in a previous section that an enhance-
ment of the average electrical power generated by
the system has taken place when the VR phe-
nomenon occurs. Now, we explore this by using a
(F, f) plot, which we call forcing space. For that
purpose, we have carried out different simulations
for three different values of ∆, while the other
parameters do not change so that ω = 0.5, Ω = 10ω
and (x0, ẋ0, v0) = (0.001, 0, 0). The figures that we
have generated show a color gradient, from blue to
red as a function of the electrical power, for dif-
ferent values of both HF and LF forcing ampli-
tudes. In Figs. 12 and 14, even if the scale of the
electrical power is different, a common pattern is
observed. We can see that the higher the two forc-
ing amplitudes, the higher the electrical power gen-
erated. However, we have a completely different
pattern in Fig. 13, where more complicated struc-
tures are shown. It is possible to distinguish several
red regions, that show us the values of the forcing
amplitudes that allow us to harvest the maximum

Fig. 13. The average electrical power 〈P 〉 ∝ 〈V 2〉 generated
by the harvester for different values of the forcing amplitudes
f, F for ∆ = 0.007. The color gradient indicates the amount
of power generated as a function of the forcing amplitudes,
from blue to red, from the smallest amount of electrical power
to the highest respectively. It is possible to see that the bigger
the two amplitudes, the bigger is the electrical power gener-
ated. We have used (x0, y0, v0) = (0.001, 0, 0) as the initial
condition.

Fig. 14. The average electrical power 〈P 〉 ∝ 〈V 2〉 generated
by the harvester for different values of the forcing amplitudes
f, F for ∆ = 0.01. The color gradient indicates the amount of
electrical power generated as a function of the forcing ampli-
tudes, from blue to red, from the smallest amount of elec-
trical power to the highest respectively. It is possible to see
that some structures show up and we have regions of F, f
values for which the electrical power is maximum. We have
used (x0, y0, v0) = (0.001, 0, 0) as the initial condition.

electrical power. These regions are surrounded by
yellow ones, in which the electrical power that we
can harvest is smaller. Finally, we can observe some
blue regions for very small forcing amplitudes f ,
where the electrical power generated is even smaller
or almost zero. Note that the color gradient scale
of Figs. 13–15 are very different. In Fig. 13, the

Fig. 15. The average electrical power 〈P 〉 ∝ 〈V 2〉 generated
by the harvester for different values of the forcing amplitudes
f, F for ∆ = 0.015. The color gradient indicates the amount
of electrical power generated in function of the forcing ampli-
tudes, from blue to red, from the smallest amount of electrical
power to the highest respectively. It is possible to see that the
bigger the two amplitudes, the bigger is the electrical power
generated. We have used (x0, y0, v0) = (0.001, 0, 0) as the
initial condition.
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electrical power generated by the system is much
higher than in the other cases. With the analysis of
these last figures we have shown that for the case of
∆ = 0.001, an enhancement of the electrical power
generated by the system appears. Besides, we can
visualize as well the regions in the forcing space for
which this occurs when the pattern is more clear.
We think that these kinds of graphical tools might
help experimentally to obtain an optimal enhance-
ment of the average electrical power. We think that,
this is crucial for a better understanding of the elec-
trical power associated to different values of the
forcing amplitudes. In fact, it gives us the oppor-
tunity to adjust the harvester to the environmental
conditions in order to harvest the exact amount of
energy that we need from the system.

6. Conclusions

In this work, we have studied a mechanical sys-
tem which has been modeled as a bistable oscil-
lator designed to harvest energy driven by a HF
and a LF harmonic external forcing. We have shown
how the distance between the magnets, ∆, may be
crucial for the occurrence of the VR phenomenon,
and as a matter of fact we have computed the val-
ues for which VR occurs. Then, we have related
the VR with the optimal electrical power responses.
We have also computed the average electrical power
for small and large variations in the amplitudes
and forcing frequencies. Furthermore, we have cal-
culated the average electrical power 〈P 〉 ∝ V 2 gen-
erated for different values of F and f where further
information related to the different regions of the
forcing space can be derived as the optimal sit-
uation for which the electrical power generated
reaches its maximum and minimum. Some interest-
ing patterns have been observed mainly for the case
∆ = 0.001. We think that this graphical study con-
stitutes a useful tool to show for which values of
the forcing amplitudes the electrical power gener-
ated is enhanced, as well as to gain a better knowl-
edge about its prediction. To summarize, we believe
that a complete study of this kind should present
the possibility to set the harvester so that it can
respond, maybe automatically, in the best way to
the environmental conditions.
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