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Abstract Time-delay is ubiquitous in many dynamical systems. The role of single
and multiple time-delay on vibrational resonance in a single Duffing oscillator and
in a system of n Duffing oscillators coupled unidirectionally and driven by both
a low- and a high-frequency periodic force is presented. The investigation is per-
formed through both theoretical approach and numerical simulation. Theoretically
determined values of the amplitude of the high frequency force and the delay-time at
which resonance occurs are in very good agreement with the numerical simulation.
A major consequence of time-delay feedback is that it gives rise to a periodic
or quasiperiodic pattern of vibrational resonance profile with respect to the time-
delay parameter. For the system of n-coupled oscillators with a single time-delay
coupling, the response amplitudes of the oscillators are shown to be independent
of the time-delay. In the case of a multi time-delayed coupling, undamped signal
propagation occurs for coupling strength (ı) above a certain critical value (denoted
as ıu). Further, the response amplitude approaches a limiting value QL with the
oscillator number i . Analytical expressions for both ıu and QL are determined.

1 Introduction

Signal detection and signal amplification are very important in engineering, physics
and biology. In recent years certain nonlinear phenomena are explored in this
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context. Particularly, certain resonance dynamics are shown to be useful for weak
signal detection. Examples include stochastic resonance [1, 2], chaotic resonance
[3], coherence resonance [4] and vibrational resonance (VR) [5]. In the case of
stochastic resonance a bistable or an excitable system is driven by a weak periodic
signal and noise. When the noise intensity is varied the signal-to-noise ratio (SNR)
at the frequency of the input periodic signal becomes maximum at an optimum
value. On either side of the optimum value of the noise intensity the SNR decreases.
In place of noise one can use a chaotic signal of a system. The resulting resonance
is called chaotic resonance. It is possible to realize a noise-induced resonance in the
absence of the external periodic force and then is termed coherence resonance.

In the VR set-up, a nonlinear system is driven by a biharmonic force consisting
of two frequencies ! and � with � � !. In a typical VR, when the amplitude
(or frequency) of the high-frequency force is varied, the response amplitude of
the system at the low-frequency ! displays one or more resonance peaks. VR can
occur even in overdamped single-well systems. Theoretical approaches have been
developed to analyse VR [6, 7]. VR has been studied in monostable [8], bistable
[5–7, 9, 10], three well [11] and spatially periodic potential [12] systems. It has
also been observed in excitable systems [13], fractional-order systems [14], maps
[15], small-world networks of FitzHugh–Nagumo equations [16] and ecological
systems [17]. VR is found to induce undamped low-frequency signal propagation
in one-way coupled [18] and globally coupled [19] bistable systems. Experimental
evidence of VR has been demonstrated in analog simulations of the overdamped
Duffing oscillator [9], in an excitable electronic circuit with Chua’s diode [13] and
in a bistable optical cavity laser [20].

It is important to study VR in different kinds of systems and explore its features
with specific emphasis on the development of theoretical analysis and the role of
properties of the systems on VR. This is precisely what motivates us to consider
here a class of dynamical systems called time-delayed systems. When the state of
a system at time t depends on its state at a shifted earlier time, say, t � ˛, then a
time-delayed feedback term is introduced in the equation of motion of the system.
The study of time-delayed systems has received a great interest in recent years
because time-delay is ubiquitous in many systems [21, 22]. The common sources
of time-delay are finite propagation time of transport of information and energy,
finite reaction times, memory effects and finite switching speed of amplifiers. Time-
delay is easily amenable in networks [23], laser arrays [24–26], electronic circuits
[27], neural systems [28–30] and optical and optoelectronic circuits. The features
of vibrational resonance in the presence of a single time-delayed feedback have
been analysed in the Langevin equation [31], two-coupled overdamped anharmonic
oscillators [32], underdamped and overdamped Duffing oscillators [33], FitzHugh–
Nagumo neuronal model [34], a genetic toggle-switch [35] and a system of
n-coupled bistable oscillators [36]. There are some notable reports on the influence
of two or three time-delayed feedbacks or coupling terms [37–44] on the dynamics
of certain systems.

Motivated by the above ideas, here we present our investigation on the effect of
single and multi time-delayed feedback (MTDF) on VR in a single nonlinear system
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and signal transduction in a system of unidirectionally coupled systems with multi
time-delayed coupling (MTDC). We choose the paradigmatic Duffing oscillator as
the reference model system. The MTDF is of the form .�=L/

PL
lD1 x.t�l˛/.L D 1

corresponds to a single time-delay. Our main goal is to explore the enhancement of
the response amplitude by the single and MTDF and MTDC.

The equation of motion of the single Duffing oscillator with an MTDF and driven
by the biharmonic force is given by

Rx C d Px C !20x C ˇx3 C �

L

LX

lD1
x.t � l˛/ D f cos!t C g cos�t; (1)

where � � !. When d D 0, � D 0, f D 0 and g D 0 the potential of the

Duffing oscillator is V.x/ D 1

2
!20x

2 C 1

4
ˇx4. For !20 < 0 and ˇ > 0 the potential

becomes a double-well shape, while for !20 and ˇ > 0 it becomes a single-well
form. We treat the double-well and the single-well cases separately. For f � 1

and because of � � ! it is reasonable to assume that the response of the system
(Eq. 1) essentially contains only a slow component X.t/ with the low-frequency !
and a fast component  .t;�t/ with the high-frequency �. Through a theoretical
approach we obtain an analytical expression for the variables X and  . We define
the ratio of the amplitude AL of slow motion and the amplitude f of the input low-
frequency force as response amplitudeQ. First we analyse the occurrence of VR in
the system (Eq. 1) with single time-delay (L D 1). From the theoretical expression
of Q we determine the values of g and ˛ denoted as gVR and ˛VR , respectively, at
which VR occurs, i.e.,Q becomes a maximum. We verify the theoretical predictions
with the numerical simulation. We illustrate the mechanism of the resonance and
compare the change in the slow motion X.t/ and the actual motion x.t/ when the
control parameters g and ˛ are varied. Next, we analyse the effect of MTDF on
VR. We determine the regions in (� � ˛) parameter space for which Qmax.�/ >

Qmax.� D 0/ for a few fixed values of L. It displays a band-like structure with the
number of bands being the number of time-delayed terms L. We analyse the effect
of L on resonance.

Then we take up the n-coupled Duffing oscillators whose equations read

Rx1 C d Px1 C !20x1 C ˇx31 D f cos!t C g cos�t;

Rxi C d Pxi C !20xi C ˇx3i D ı

L

LX

lD1
xi�1.t � l˛/; (2)

where i D 2; 3; � � � ; n. Our prime interest is on the analysis of signal propagation
in the system (Eq. 2) with n D 200. Applying the theoretical treatment used for the
system (Eq. 1) we express Qi in terms of Qi�1 except for the first oscillator. When
L D 1, the analytical expression of Qi , i > 1 is found to be independent of the
time-delay parameter ˛. This implies that the time-delay has no influence on Qi .
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For i � 1 the theoretical Qi deviates largely from the numerically computed Qi .
This is because of the neglect of nonlinear terms in the equation of motion of the
slow variableXi.t/. Inclusion of nonlinear terms leads to a set of coupled nonlinear
equations for Qi . Interestingly, the Qi ’s computed by solving this set of equations
are in very good agreement with the numerically calculatedQi . The coupled system
shows undamped signal propagation (that is, Q200 > Q1) for certain range of
values of the control parameters ˛ and ı. In the undamped signal propagation, Qi

exhibits sigmoidal type of variation with i , that is,Qi ! QL for sufficiently large i .
We are able to obtain an analytical expression for the limiting value of Q, QL, and
the critical value of ı, ıu, above which undamped signal propagation takes place.
Interestingly, bothQL and ıu are independent of the parameter g.

Before taking up the main theme, in the next two sections we briefly point out
that time-delay is ubiquitous and show the absence of VR in a linear system with
time-delayed feedback and driven by the biharmonic force.

2 Time-Delay Is Ubiquitous

A first-order delay differential equation is of the form

Px D F.t; x.t/; x.t � ˛l //; (3)

where ˛l > 0, l D 1; 2; � � � are delay times. The time-delays ˛l can be of different
types depending upon the nature of the sources of the time-delay. In the nonlinear
dynamics literature the effect of the following types of time-delay is investigated in
a variety of nonlinear systems [22]:

1. A single constant delay: ˛l D ˛ D a constant, l D 1.
2. Multiple time-delay: ˛l D l˛, ˛ D a constant, l D 1; 2; � � � ; L. An example is

F.x.t � ˛l // D 1

L

LX

lD1
x.t � l˛/.

3. Integrative time-delay or distributive delay: A delay term of this kind is repre-

sented as hxi˛ D 1

˛

Z ˛

t�˛
x.t 0/ dt 0.

4. Time-dependent delay: ˛.t/ D aC bt or aC b
p
t with ˛ < t .

5. State-dependent delay: ˛ D F.x.t//. An example is ˛.x.t// D jx.t/j.
Typical examples of systems with delays are given by maturation times [45], hydro-
dynamic problems [46], chemical surface reactions [47] and feedback regulated
voltage-controlled oscillators [48, 49]. In nonlinear optics, periodic and chaotic
outputs are realized by a delayed feedback [50]. Such delay-induced dynamics are
used to design practical systems including high-frequency and broadband optical
chaotic oscillators for secure chaos communication [51] or high-speed random
number generation [52] or to develop alternative imaging techniques [50].
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It is noteworthy to mention that delayed self-communication is of great
significance because of its regulatory mechanism in nature and technology [53,54].
Examples include excitable gene regulatory systems [55], eye movements [56],
human balance [57] and optically communicating semiconductor lasers [58].
In neural networks communicating between the various areas may take place
in delays ranging from few milliseconds to hundreds of milliseconds due to
the finite speed of the transfer of data in the axons and dendrites and because
of the processing latency in the synapses [59]. In neural systems the source for
a precise firing of basket cells in hippocampus during Theta and Gamma rhythm
is a delayed feedback. Experimental evidences are reported for delayed recurrent
excitations inducing regulation of the structure of the interspike intervals in the
presence of noise [60]. Delayed self-coupling in the study of the pacemaker cells
of crayfish [61] is found to give rise bursting and high-frequency discharges with
relatively long quiescent intervals [62]. One can treat the time-delay as an external
force.

In coupled systems, coupling transmits one or more variables to neighbours.
Often the transmission time is larger than the internal time scales of the systems.
In this case coupling terms consisting of time-delayed variables are realistic.
Message decoding in chaos-based communication systems would require chaos
synchronization between multiple time-delayed transmitter and receiver systems.
In high speed chaos-based communication systems [63] external cavity semiconduc-
tor lasers form an integral part. In practical applications such lasers may be subject
to more than one optical reflection. This would lead to multiple time-delays. It has
been pointed out that inclusion of several external cavities could provide higher
security for such communication systems [64].

3 Resonance in a Linear System with Time-Delayed
Feedback

In this section we consider a linear system with linear MTDF and driven by two
periodic forces. The equation of motion of the system is given by

Rx C d Px C !20x C �

L

LX

lD1
x.t � l˛/ D f cos!t C g cos�t; (4)

where !20 > 0 and d > 0. The general solution of Eq. (4) for f D g D 0 is
not known. Equation (4) with f D g D � D 0 is a damped linear system.
Its equilibrium point .x�; Px�/ D .0; 0/ is stable. When f D g D 0 and � ¤ 0,
Eq. (4) exhibits a damped or periodic or growing oscillation depending upon the
values of � , L and ˛ [22]. Here, we are interested in the long time behaviour of
Eq. (4). In the limit t ! 1 we seek the solution of Eq. (4) in the form

x.t/ D A! cos.!t C �!/C A� cos.�t C ��/ : (5)



240 S. Rajasekar and M.A.F. Sanjuán

The unknownsA! and �! are determined as

A! D fp
S!
; S! D

"

!20 � !2 C �

L

LX

lD1
cos l˛!

#2

C
"

d! � �

L

LX

lD1
sin l˛!

#2

;

(6)

�! D tan�1
"

d! � �

L

PL
lD1 sin l˛!

!2 � !20 � �

L

PL
lD1 cos l˛!

#

: (7)

Replacement of ! and f by � and g, respectively, in Eqs. (6) and (7) gives A�,
S� and ��. As f .g/ increases A!.A�/ also increases. Resonance does not occur at
the frequencies ! or � when f or g is varied from a small value. Thus, there is no
vibrational resonance in the linear system with time-delayed feedback.

4 Single Duffing Oscillator: Theoretical Expression
for the Response Amplitude Q

The main objective of this section is to obtain an expression for the response
amplitudeQ for the single Duffing oscillator system of Eq. (1) [65].

We assume the solution of the system (Eq. 1) for � � ! as x D X C  where
X.t/ and  .� D �t/ are a slow motion with period 2�=! in the time t and a fast
motion with period 2� in the fast time � , respectively. Further, we assume that the

average value of  over the period 2� is h i D 1

2�

Z 2�

0

 d� D 0. Substitution of

x D X C  in Eq. (1) gives the following equations for the variablesX and  :

RX C d PX C �
!20 C 3ˇh 2i�X C ˇ

�
X3 C h 3i�C 3ˇX2h i

C �

L

LX

lD1
X.t � l˛/ D f cos!t; (8)

R C d P C !20 C 3ˇX2. � h i/C 3ˇX
�
 2 � h 2i�

Cˇ � 3 � h 3i�C �

L

LX

lD1
 .�t � l˛�/ D g cos�t; (9)

where h ni D 1

2�

Z 2�

0

 n d� . Because  is a fast variable we can neglect the

nonlinear terms in Eq. (9). In the limit of t ! 1, referring to the solution of the
linear system (Eq. 4) given by Eqs. (5)–(7), we write the solution of Eq. (9) as

 D � cos.�t C �/; (10)
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where � D g=k,

k2 D
 

!20 ��2 C �

L

LX

lD1
cos l˛�

!2

C
 

d� � �

L

LX

lD1
sin l˛�

!2

(11)

and

� D tan�1
 

d� � �

L

PL
lD1 sin l˛�

�2 � !20 � �

L

PL
lD1 cos l˛�

!

: (12)

For sufficiently large values of � we can further approximate the solution
(Eqs. 10–12) by dropping the terms !20 and d�. However, in our treatment we
keep these terms in the solution. From the above solution we obtain h i D 0,
h 2i D �2=2 and h 3i D 0. Then Eq. (8) becomes

RX C d PX C C1X C ˇX3 C �

L

LX

lD1
X.t � l˛/ D f cos!t; (13)

where C1 D !20 C 3

2
ˇ�2. When f D 0, the equilibrium points of Eq. (13) are

X�
0 D 0; X �̇ D ˙

s

�C1 C �

ˇ
: (14)

Slow oscillations occur around these equilibrium points.
Substituting X D Y C X�, where Y is the deviation of the slow motion from

X�, in Eq. (13), we obtain

RY C d PY C !2r Y C 3ˇX�Y 2 C ˇY 3 C �

L

LX

lD1
Y.t � l˛/ D f cos!t: (15)

The solution of the linear version of Eq. (15) in the limit t ! 1 and f � 1 is
Qf cos.!t C �/, where the response amplitudeQ and the phase � are given by

Q D 1p
S
; S D

 

!2r � !2 C �

L

LX

lD1
cos l˛!

!2

C
 

d! � �

L

LX

lD1
sin l˛!

!2

(16)

and � D �.� D !;!20 D !2r /. !r is the resonant frequency of the linear version of
the equation of motion of the slow variable X.t/. In the next section we analyse the
occurrence of VR in the system (Eq. 2) with a single time-delayed feedback term
and then take up the system with MTDF.
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5 Resonance in the System with a Single Time-Delay

In the absence of the damping term, external periodic forces and feedback term

the potential of the Duffing oscillator is V.x/ D 1

2
!20x

2 C 1

4
ˇx4. V.x/ becomes a

double-well for !20 < 0, ˇ > 0, and a single-well for !20 , ˇ > 0, respectively.
Moreover, for !20 > 0, ˇ < 0 the potential has a single-well with double-hump
form. These three forms of the potential are depicted in Fig. 1. For !20 , ˇ < 0 the
potential has an inverted single-well form. We treat the double-well and single-well
cases of the system separately.

5.1 Resonance Analysis in the Double-Well System

The equilibrium points around which slow oscillations take place are given by
Eq. (14). There are three equilibrium points for g < gc where

gc D
�
2k2

3ˇ

�j!20 j � ��
�1=2

; j!20 j � � > 0; (17)

For g < gc the system admits two slow motions, one about X�C and the other about
X��. X�

0 is unstable. For g > gc, X�
0 is the only real equilibrium point and a slow

orbit occurs about it. That is, the effective potential of the slow variableX undergoes
a transition from the double-well to a single-well at gc.

The possibility of occurrence of resonance when a control parameter is varied
and the values of a parameter at which resonance occurs can be determined from
the theoretical expression of Q. The response amplitude Q is a maximum when
the function S in Eq. (16) is a minimum. When a parameter, say, g is varied then
resonance occurs at a value of gVR , where gVR is a root of the equation dS=dg D 0.
This condition requires

!2r D !2 � � cos˛!: (18)

V
(

)

420-2-4

4

2

0

-2

Fig. 1 Single-well
(represented by a continuous
line, !20 D 0:5, ˇ D 0:1),
double-well (represented by a
dashed line, !20 D �1,
ˇ D 0:1) and single-well
with double-hump
(represented by solid circles,
!20 D 1, ˇ D �0:1) forms of
the potential of the Duffing
oscillator
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From this resonance condition one can obtain an analytical expression for gVR .
We obtain the following results.

Case 1: ” < 0

When

� < 0; j� j < j�c<j D !2

1 � cos˛!
(19)

there are two resonances. The values of g at which resonance occurs are given by

g.1/
VR

D
�
k2

3ˇ

�
2j!20 j � !2 � 3� C � cos˛!

�
�1=2

< gc; (20)

g.2/
VR

D
�
2k2

3ˇ

�j!20 j C !2 � � cos˛!
�
�1=2

> gc: (21)

The response amplitude is the same at these two values of g. For � < 0 and
j� j > j�c<j only one resonance is possible and in this case g.1/

VR
D gc. For j� j <

j�c<j the resonances are due to the matching of !2r with !2 � � cos˛! (refer
to Eq. (18)), while the resonance at g D gc for j� j > j�c<j is due to the local
minimization of !2r .

Case 2: ” > 0

For � > 0, one resonance occurs at g D g.2/
VR

given by Eq. (21) provided j!20 j C
!2 > � . Another resonance occurs at g D g.1/

VR
given by Eq. (20) if

j!20 j > �; � < �c> D 2j!20 j � !2

3 � cos˛!
: (22)

The two resonances are resulting from the resonance condition (Eq. 18).

To verify the theoretical predictions, we numerically compute the sine and cosine
components Qs and Qc, respectively, at the low-frequency ! of the numerical
solution x.t/ of the system (Eq. 1). In the calculation of Qs and Qc we use the
solution x.t/ corresponding to 200 drive cycles of the input signal after leaving
a sufficient transient. Then Q D p

Q2
s CQ2

c=f . We choose the values of the
parameters as d D 0:5, !20 D �1, ˇ D 0:1, f D 0:1, ! D 1 and � D 10.
Equation (1) is integrated numerically using the Euler method with time step 0:01.
The time-delay parameter ˛ takes always multiple values of 0:01.

Figure 2a presents both theoretical and numerical gVR as a function of � for
˛ D 1 and 3. We notice a very good agreement between the theory and the numerical
simulation. For ˛ D 1 and 3 we find �c< D �2:17534 and �0:50251, respectively.
For � < 0, there are two resonances for j� j < j�c<j and only one for j� j > j�c<j.
For j� j < j�c<j, as g increases from 0 the quantity !2r decreases from 2j!20 j C 3j� j
and reaches the minimum value j� j at g D gc. As g increases from gc the value
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α= 1
α= 3

γ

g V
R

0-0.5-1-1.5-2-2.5

500

400

300

200

g

ω
2 r

6004002000

10

5

0

γ= −2.3
γ= −0.3

γ= 0

g

Q

6004002000

2

1.5

1

0.5

0

a b

c

Fig. 2 (a) Theoretical and numerical gVR versus the parameter � for the system (Eq. 1) with the
double-well potential case. The number of delay term is 1. The solid circles are the numerically
computed gVR and the lines are theoretical gVR . (b) !2r versus g. From bottom to top curves the
values of � are 0, �0:3 and �2:3, respectively. The horizontal dashed line represents the value of
.!2 � � cos ˛!/. The vertical dashed lines mark the values of gVR . (c) Q as a function of g with
˛ D 1. The continuous lines are theoreticalQ while the dashed lines are numerically calculatedQ

of !2r increases from j� j. This is shown in Fig. 2b for � D 0, �0:3 and �2:3. For
� D 0 and �0:3 at g.1/

VR
and g.2/

VR
we have !2r D !2 � � cos˛! (indicated by the

horizontal dashed line in Fig. 2b) and hence Q becomes maximum with Qmax D
1=jd! � � sin ˛!j. In Fig. 2c we observe two resonances. In the absence of time-
delay feedback Q becomes maximum when !r D ! and the maximum value of
Q is 1=.d!/. For � D �0:3 the theoretical values of g.1/

VR
and g.2/

VR
are 242:75 and

382:95, while the numerically computed values are 240:34 and 377:43, respectively.
For j� j > j�c<j the value of !2r is always > .!2 � � cos˛!/. However, it has a
local minimum at g D gc and thus a resonance. These are shown in Fig. 2b,c for
� D �2:3. Note that Q is minimum at g D gc for j� j < j�c<j.

In Fig. 2c the value of Q at resonance is always lower than the case � D 0.
Qmax.�; g/ D Q.�; gVR/ > Q.� D 0; gVR/ can be realized for a range of values
of ˛ and � . Figure 3a presents the variation of Q.gVR/ in .�; ˛/ parameter space
for ! D 1 and � < 0. We can clearly see that Q.�; gVR/ > Q.� D 0; gVR/ for
˛ 2 Œ�; 2�	. Figure 3b is the three-dimensional plot of Q as a function of � and g
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Q (g
VR

)5

3

1

α
6420

γ

0

-0.1

-0.2

-0.3

Q

3

2

1

g

500

300

100

γ

0

-0.5

-1

a

b

Fig. 3 (a) Variation ofQ.g D gVR/ as a function of � and ˛ for the double-well case of the system
(Eq. 1) with single time-delay. (b) Three-dimensional plot of Q versus the parameters � and g for
˛ D 3:5

for ˛ D 3:5. For ˛ D 3:5 the value of j�c<j is 0:51641. In Fig. 3b for j� j < 0:51641
there are two resonances with Q.�; gVR/ > Q.� D 0; gVR/. Only one resonance
occurs for j� j > 0:51641.

Now we compare the change in the slow motionX.t/ and the actual motion x.t/
when the parameter g is varied. For � D �0:3 and ˛ D 1 the numerically computed
values of gVR are 240:5 and 376:85. The phase portrait of slow motion is plotted in
Fig. 4 for several values of g. For g < gc .D 296:95/ there are two slow motions:
one around X�C and the other around X��. As g increases from a small value the
equilibrium points about which X.t/ and x.t/ occur move towards the origin. This
is shown in Fig. 4 for four values of g < gc. In this figure the orbits coexisting
around X�� are not shown for clarity. For g > gc, as noted earlier, X�

0 D 0 is the
only equilibrium point and hence both X.t/ and x.t/ occur around the origin. This
is evident in Fig. 4 for three values of g > gc. We observe that at the resonance
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7

6

5

4 3
2 1

X

Ẋ

3210

0.1

0

-0.1

Fig. 4 Phase portraits of the slow variable X of the double-well system (Eq. 1) with single time-
delay for several values of g. The values of g for the numbers 1�7 are 100 .1/, 240:5 .2/, 275 .3/,
295 .4/, 300 .5/, 376:85 .6/ and 600 .7/. Here d D 0:5, !20 D �1, ˇ D 0:1, � D �0:3, ˛ D 1,
f D 0:1, ! D 1 and � D 10. The equilibrium points X�

0 and X�

C
are marked by the solid circles

(g D 240:50) both x.t/ and X.t/ > 0. That is, cross-well motion and bistability
are not necessary ingredients for VR. As a matter of fact, it can occur in monostable
systems [8].

Next, we present the effect of the time-delay parameter ˛ on VR. The condition
for a resonance to occur when ˛ is varied is given by (from dS=d˛ D 0)

�
!2r � !2

�
!2r˛ C �

!2r˛ � d!2� � cos˛! � �!
�
!2r � !2� sin ˛! D 0; (23)

where!2r˛ D d!2r =d˛. Analytical expressions for the roots of the above equation are
difficult to obtain. However, the roots denoted as ˛VR can be determined numerically
from Eq. (23). We compute theoretical ˛VR (from Eq. (23)) and numerical ˛VR (by
numerically solving the Eq. (2)) for a range of values of g with � D �0:3. In Fig. 5a
˛VR < 3 � 2�=! are alone plotted. .˛VR are periodic with period 2�=!/. Figure 5b
presents numericalQ as a function of ˛ and g. We can clearly see the periodicity of
Q with respect to ˛.

Figure 6 illustrates the effect of ˛ on the slow motionX.t/ for g D 250 and 350.
When ˛ is increased from a small value with g < gc, then the shift in the locations
ofX �̇ is very small. However, the amplitude of the slow orbits varies and resonance
occurs at ˛ D ˛VR . When ˛ is varied for g > gc then the slow orbit occurs about
X�
0 D 0. These are shown in Fig. 6 for g D 250 < gc and g D 350 > gc. For

g D 250.< gc/ the slow motion occurs aboutX�C and X��. This is shown in Fig. 6a,
b for a few fixed values of ˛. In these figures the resonant orbits are marked by the
label 2. The orbits marked by 1 and 3 correspond to the values of ˛ on either side of
˛ D ˛VR . In Fig. 6c,d, for g D 350 > gc slow motion occurs aboutX�

0 D 0. Tuning
time-delay is an advantage when it is desired to observe the response of a system
and VR with the centre of the orbit (slow as well as the actual orbit) almost remains
the same.
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Fig. 5 (a) ˛VR versus the
amplitude g of the high
frequency force for
� D �0:3. The system is the
double-well single system.
Continuous lines and painted
circles represent theoretically
and numerically computed
values of ˛VR , respectively.
(b) Periodic variation of the
response amplitude Q with
the time-delay parameter ˛
for various values of g in the
interval Œ100; 300	 for
� D �0:3

5.2 Resonance Analysis in the Single-Well System

For !20 , ˇ > 0 the potential V.x/ of the system has a single-well shape with a
local minimum at x D 0. Unlike the double-well system, the effective potential of
X remains as a single-well when the amplitude g of the high-frequency force is
varied. Consequently, slow oscillation always occurs about X�

0 D 0.
For the single-well case the resonance value of g is given by

gVR D
�
2k2

3ˇ

�
!2 � !20 � � cos˛!

�
�1=2

: (24)

We recall that in the double-well case a resonance is possible for all set of values of
� and ˛ when g is varied. In contrast to this, in the single-well system a resonance is
possible only for a set of values of � and ˛ for which!2�� cos˛! > !20 . Further, in
the double-well system two resonances are possible while in the single-well system
at most one resonance is possible.

In Fig. 7a we plot the variation of theoretical gVR with � and ˛ for !20 D 0:5 and
ˇ D 0:1. For a fixed value of � as ˛ increases from zero the value of gVR increases
and becomes maximum at ˛ D �=! and then decreases. gVR is periodic in ˛ with
period 2�=! and Qmax D 1=jd! � � sin ˛!j. In Fig. 7b the maximum value of Q
at g D gVR for ˛ D 2 increases when � increases. For a certain range of values of
˛, gVR decreases when � increases and the value of Q at resonance increases. For
example, when ˛ D 1 the value of gVR decreases when � increases. For ˛ D 2 and
3, gVR increases when � increases.
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Fig. 6 X versus PX as a function of ˛.� 14/ for two fixed values of g. (a) g D 250, ˛ D 4 .1/,
4:57 .2/ and 8 .3/. (b) g D 250, ˛ D 10:5 .1/, 10:97 .2/ and 14 .3/. (c) g D 350, ˛ D 3:5 .1/,
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Fig. 7 (a) Theoretical gVR versus the time-delay feedback parameters � and ˛ for the single-well
case of the system (Eq. 1) with L D 1, !20 D 0:5 and ˇ D 0:1. (b) Q versus the parameters � and
g for ˛ D 2

Figure 8a presents both theoretical and numerical ˛VR versus g for � D 0:15. ˛VR

is periodic with period 2�=!. For a fixed value of g resonance occurs at only one
value of ˛ for ˛ 2 Œ0; 2�=!	. In Fig. 5a, corresponding to the double-well system,
a double resonance is found for a certain range of fixed values of g. The presence
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of only one resonance in Fig. 8a for ˛ 2 Œ0; 2�=!	 implies that the variation of
k2 due to the terms � sin ˛� and � cos˛� (see Eq. (11)) is negligible and k2 �
.!20 ��2/2 C d2�2. Then from Eq. (16) the expression for ˛VR is obtained as

˛VR D 1

!
tan�1

�
d!

!2 � !2r

�

; !2r D C1: (25)

˛VR is independent of � ; however, the maximum value of Q at resonance varies
with � . This is confirmed in the numerical simulation. The maximum value of Q
for � ¤ 0 is always found to be greater than the value of Q for � D 0 (see Fig. 8b).
Figure 8c demonstrates the periodic variation of Q with the delay parameter ˛. For
irrational values of the ratio �=! the response amplitude exhibits a quasiperiodic
pattern.
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6 Single Duffing Oscillator: Effect of Multi Time-Delay

In this section we consider the system (Eq. 1) with MTDF. We restrict our analysis
to the double-well case alone.

We choose d D 0:5, !20 D �1, ˇ D 0:1, f D 0:1, ! D 1 and � D 10.
Figure 9 presents both theoretically and numerically computed Q as a function of
the control parameter g for L D 1; 2; 3 and 5 for � D 0:3 and for two values
of ˛. The result for � D 0 is also shown in this figure. VR is observed for all
the values of L chosen. The theoretical Q value is in good agreement with the
numerical Q value. In Fig. 9 two values of ˛ are chosen in such a way that for one
value Qmax.�/ > Qmax.� D 0/ (the value of Q at resonance) while for the other
valueQmax.�/ < Qmax.� D 0/ D 2.

Using the theoretical expression of Q, in (� � ˛) parameter space we identify
the regions where Qmax.�/ > Qmax.� D 0/ for a few fixed values of L. The result
is presented in Fig. 10. For both � < 0 and � > 0, Fig. 10 has L bands. In the
bands filled with dotsQmax.�/ > Qmax.� D 0/. The width of the bands is unequal.

3

1

2

L = 1

Q

5002500

5

2.5

0

3

1

2

L = 2

Q

5002500

5

2.5

0

3

1

2

L = 3

g

Q

5002500

5

2.5

0

3
1

2

L = 5

g

g g

Q

5002500

5

2.5

0

a

c

b

d

Fig. 9 Q versus g for a few fixed number of time-delayed feedback terms. We fixed d D 0:5,
!20 D �1, ˇ D 0:1, f D 0:1, ! D 1 and � D 10. The continuous and dashed lines are the
theoretically and numerically calculated values of Q, respectively. In all the subplots, � D 0 for
curve 1. For the curves 2 and 3 � D 0:3 and ˛ D 0:5 and 5:5, respectively
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Fig. 10 Plot of regions (marked by dots) in the (� � ˛) parameter space where Qmax.�; ˛/ >

Qmax.� D 0/ for ! D 1

The filled bands of � < 0 become the unfilled bands of � > 0. From the theoretical
expression of Q the condition for the enhanced response at resonance due to the
time-delayed feedback term is �

PL
lD1 sin l˛! > 0 (refer Eq. (16)) and is realized

in the regions filled with dots in Fig. 10. For each value of L the total length of ˛
intervals where Qmax.�/ > Qmax.� D 0/ is � � .

We define G D Qmax.�/=Qmax.� D 0/ as the gain factor. Figure 11 shows the
variation of G as a function of the parameters � and ˛ for few values of L. In this
figure data with G > 1 alone is plotted. For wide ranges of ˛ and � the gain factor
is > 2, that is, the delay is able to increase the value of Q at resonance more than
twice the value of Q in its absence. The addition of more and more delay terms
decreases the maximum value of G. Moreover, it produces new regions with G > 1

in the (� � ˛) parameter space and decreases the value of G to less than 1 in certain
regions where G > 1 earlier.

The resonance condition given by Eq. (18) and the results of cases 1 (� < 0) and
2 (� > 0) presented in Sect. 5 for a single delay-time are applicable for the MTDF
with � cos˛! replaced by .�=L/

PL
lD1 cos l˛!. We point out that in the system

(Eq. 1), in absence of MTDF, there are two resonances for 2j!20 j > !2, while one
for 2j!20 j < !2. With MTDF the number of resonances for � < 0 depends on
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Fig. 11 G D Qmax.�/=Qmax.� D 0/ > 1 versus � and ˛ for various values of L

the parameters !, L and ˛. For � > 0 the number of resonances depends also on
the parameter !20 . Thus, by suitably choosing the values of � , ˛ and L the system
can be set to show either two resonances or one resonance by varying the control
parameter g. That is, the number of resonances can be varied by means of an MTDF.

In the single oscillator, an amplification of a low-frequency signal can be
achieved for a range of amplitude and frequency of the high-frequency force in the
absence of time-delayed feedback. In this case the maximum value ofQ is 1=.d!/.
When the MTDF is introduced, we find Qmax D 1=jd! � .�=L/

PL
lD1 sin l˛!j.

That is, Qmax can be further increased or decreased by appropriate choices of � , ˛
and L. Thus, the MTDF can be used to control the value ofQmax.

7 Signal Propagation in a System of n-Coupled Oscillators

In this section we focus our investigation on the signal propagation in a system
of n-coupled Duffing oscillators, Eq. (2), with n D 200. In the system (Eq. 2) the
external force is applied to the first oscillator alone. The coupling term is linear and
has multiple time-delayed terms. The evolution of x1 is independent of xi , i > 1

while those of xi , i > 1 depends on xi�1.

7.1 Theoretical Approach

Writing xi D Xi C  i where Xi ’s and  i ’s are slow variables and fast variables,
respectively, and applying the theoretical treatment used in Sect. 4, we obtain the
following results:

Yi .t/ D Qif cos.!t C �i /; (26)
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where

Q1 D 1
q�
!2r1 � !2�2 C d2!2

; Qi D PiQi�1; (27)

Pi D ı r!
q�
!2ri � !2

�2 C d2!2
; i D 2; 3; � � � ; n (28)

!2ri D Ci C 3ˇX�2
i ; (29)

Ci D !20 C 3

2
ˇ�2i ; i D 1; 2; � � � ; n (30)

X�
1

�

X�2
1 C C1

ˇ

�

D 0; (31)

X�3
i C Ci

ˇ
X�
i � ı

ˇ
X�
i�1 D 0; i D 2; 3; � � � ; n (32)

�1 D g=k; �i D ı r�

k
�i�1; i D 2; 3; � � � ; n (33)

k D
q
�
�2 � !20

�2 C d2�2 ; (34)

r! D 1

L

2

4

 
LX

lD1
sin l˛!

!2

C
 

LX

lD1
cos l˛!

!23

5

1=2

(35)

and r� is similar to r! with ! replaced by � in Eq. (35). The above theoretical
treatment gives an important result. When the number of time-delayed terms in the
coupling is only one (L D 1), then r! D r� D 1 and hence the response amplitudes
Qi ’s, i > 2 are independent of the time-delay parameter ˛. This is because when
L D 1 the coupling term ıxi�1.t�˛/ becomes ıX�

i�1CıQi�1f cos.!t�˛!C�i�1/
in which �˛! C �i�1 is an unimportant phase factor as far as the amplitudes of
oscillation of xi ’s are concerned. The above theoretical prediction is verified in the
numerical simulation. Therefore, in the rest of our analysis we consider L > 1.

In obtaining the theoretical Qi , we have neglected the nonlinear terms in the
equations of motion of and Y.D X�X�/. In the systems of n-coupled oscillators,
the error in the theoreticalQ due to the above approximation is found to be large for
i � 1. To show this we define 
Qi D Qi;T �Qi;N, whereQi;T andQi;N represent
Qi values determined theoretically and numerically. In Fig. 12 we plot 
Qi with i
for three values of g. For first few oscillators 
Qi � 0 and then it diverges with i .
In obtaining �i given by Eq. (33) we assumed that R i �  2i and  3i . This can be a
valid assumption for i D 1, where the first oscillator is driven by the high-frequency
force g cos�t . Because the other oscillators are not driven explicitly by the high-
frequency force, the assumption R i �  2i and  3i is not valid for i � 1. Further,
nonlinear terms in the equations of Yi are neglected in obtainingQi . Moreover, the
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f D 0:1, ! D 1:5, � D 15,
L D 2, ı D 2:5, ˛ D 1 and
for three values of g

errors in  i and Yi propagate to the .i C 1/th oscillator through the coupling term.
Consequently, 
Qi is negligible for the first few oscillators and becomes large for
i � 1.

In order to minimize the error in the theoretical Qi and also to reduce the
propagation of this error through the consecutive oscillators, we include nonlinear
terms in the calculation of the amplitudes of oscillation of the fast and slow variables
[18]. We assume

 i D �i cos.�t C �i /; Xi D Ai cos.!t C �i /: (36)

Substitution of (Eq. 36) in the equations

R 1 C d P 1 C !20 1 C ˇ 31 D g cos�t;

R i C d P i C !20 i C ˇ 3i D ı

L

LX

lD1
 i�1.t � l˛/; (37)

RX1 C d PX1 C !201X1 C ˇX3
1 D f cos!t;

RXi C d PXi C !20iXi C ˇX3
i D ı

L

LX

lD1
Xi�1.t � l˛/; (38)

where i D 2; 3; � � � ; n and !20j D !20 C 3

2
ˇ�2j , j D 1; 2; � � � ; n gives [65]

�6i C a��
4
i C b��

2
i � Ri� D 0; (39)

A6i C aiAA
4
i C biAA

2
i � RiA D 0; i D 1; 2; � � � ; n (40)

where

a� D 8

3ˇ

�
!20 ��2

�
; b� D 16

9ˇ2

h�
!20 ��2

�2 C d2�2
i
; (41)
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Fig. 13 Variation of Qi with i for (a) three values of g with L D 2, ˛ D 1 and ı D 2:5 and (b)
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R1� D 16g2

9ˇ2
; R1A D 16f 2

9ˇ2
; (42)

aiA D 8

3ˇ

�
!20i � !2� ; biA D 16

9ˇ2

h�
!20i � !2

�2 C d2!2
i
; i D 1; 2; � � � ; n

(43)

Ri� D 16ı2r2��
2
i�1

9ˇ2
; RiA D 16ı2r2!A

2
i�1

9ˇ2
: i D 2; 3; � � � ; n: (44)

r! is given by Eq. (35) and r� is obtained from r! by replacing ! by �.
Equations (39) and (40) can be viewed as cubic equations for the variables �2i and
A2i , respectively. Analytical expressions for the roots of the cubic equation of the
form (Eq. 39) are given in [66]. We determine �i , Ai and then Qi D Ai=f by
solving the Eqs. (39) and (40). We use Q200 > Q1 as the criterion for undamped
and enhanced signal propagation in the coupled oscillators.

We check the validity of the theoretical approach. In Fig. 13a we plot both the
theoretically calculated Qi and the numerically computed Qi as a function of i
for three values of g with L D 2, ˛ D 1 and ı D 2:5. We observe a very good
agreement of the theoreticalQi with the numericalQi .

7.2 Undamped and Damped Signal Propagations

In Fig. 13a for each fixed value of g, for sufficiently large i , Qi attains a saturation
value. The variation ofQi with i displays a kink-like dependence. That is, there is a
critical number of oscillators for obtaining the maximum response and this number
depends on the control parameters. An interesting observation in Fig. 13a is that
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Qi > Q1 for i > 1, even in the absence of a high-frequency force. This implies that
a coupling alone is able to give rise to an enhanced undamped signal propagation in
the coupled oscillators. Figure 13b shows the influence of the number of time-delay
terms in the coupling onQi , where g D 175, ˛ D 1 and ı D 5. For L D 2 and 3 an
undamped signal propagation occurs while for L D 4 a damped signal propagation
takes place.

We call the limiting or saturation value of Qi as QL. Interestingly, we can
determine �L, AL and hence QL D AL=f from Eqs. (39) and (40), respectively.
Substituting �i D �i�1 D �L and Ai D Ai�1 D AL for sufficiently large i in
Eqs. (39) and (40) we obtain

�L D 0;

�
4

3ˇ

�

�2 � !20 ˙
q
ı2r2� � d2�2

�	 1=2
(45)

and

AL D 0;

�
4

3ˇ

�

!2 � !20L ˙
q
ı2r2! � d2!2

�	 1=2
; (46)

where !20L D !20 C 3

2
ˇ�2L. AL D 0 and ¤ 0 correspond to a damped and an

undamped signal propagation, respectively. It is also possible to find out the
condition on ı for undamped signal propagation. In Fig. 13 in all the examples of
undamped signal propagationQ2 > Q1. This is further confirmed for a large set of
parametric values. Therefore, we assume that if Q2 > Q1, then

Qi � Qi�1 � � � � > Q3 > Q2 > Q1: (47)

For Q1 and Q2 very much satisfactory analytical expressions are given by Eq. (27)
with i D 2. The condition forQ2 > Q1 is P2 > 1, where

P2 D ı r!
q�
!2r2 � !2�2 C d2!2

; !2r2 D !20 C 3ˇg2ı2r2�
2�8

: (48)

In this equation, !2r2 � !20 because of 1=�8 in the second term of !2r2. Then P2 > 1
gives

ı > ıu D
q�
!20 � !2

�2 C d2!2

r!
: (49)

Undamped signal propagation takes place for ı > ıu. A very interesting result is that
both QL and ıu are independent of the amplitude g of the high-frequency periodic
force. We can confirm this in Fig. 13a where numerically computedQi for different
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values of g approach the same limiting value. Figure 14 describes the dependence
of ıu on the number of time-delayed termsL and the time-delay ˛. In this figure, for
clarity, only the values ıu < 10 are shown. When ıu > 10 is also considered then
the ıu curve has L peaks for a given value of L. For ı values above the threshold
curve an undamped signal propagation occurs. For L D 2 and ˛ D 1, 1:5 and 3 the
theoretical and the numerically computed values of ıu are (1:99, 1:96), (3:38, 3:31)
and (2:32, 2:30), respectively. Figure 15 presents QL versus ı and ˛ for four fixed
values ofL. In this figure we can clearly see the effect of the number of time-delayed
termsL and the time-delay ˛ onQL. The dependence ofQL on ˛ is nonmonotonic.
Even for large values of ı there are intervals of ˛ in which QL D 0 (damped signal
propagation).

8 Conclusions

The role of the amplitude g of the high-frequency periodic force and the delay-
time feedback parameters � and ˛ on VR is explored in the systems (Eqs. 1 and 2)
through a theoretical approach. The theoretical treatment used in the present analysis
allows us to predict the values of the control parameters at which resonance occurs,
number of resonances, the maximum value of the response amplitude Q and
explains the mechanism of resonance. The theoretical predictions ofQ, gVR and ˛VR

are in very good agreement with the numerical simulations. The presence of time-
delay feedback is found to enrich the VR phenomenon. Particularly, the time-delay
parameter ˛ gives rise to a periodic or quasiperiodic pattern of VR profile. This
feature of VR allows us to select different values (small or large) for the delay-time
˛ to enhance the quality of the weak signal and it can be highly useful in optimizing
the operation of multistable systems for the detection and regeneration of signals in
a variety of experimental systems.

In the single oscillator, when the amplitude g of the high-frequency periodic
force is varied, a single or a double resonance occurs depending upon the values
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Fig. 15 Three-dimensional plot of QL versus ı and ˛ for four fixed values of the number of time-
delayed coupling terms L. QL is independent of the parameter g

of the parameters !20 , !, ˛, L and � and is independent of the parameters d , f , ˇ
and �. In the � (the strength of feedback term)—˛ (time-delay) parameter space
the regions with Qmax.�/ > Qmax.� D 0/ have L bands where L is the number of
time-delayed feedback terms. The maximum value of response amplitude is found to
decrease when the number of feedback terms increases. The response amplitudeQ
depends on all the parameters except f (the analysis performed in the present work
is valid only for jf j � 1) while its value at resonance depends on the parameters
d , !, � , ˛ and L.

More importantly, the theoretical approach is able to determine and explain the
various features of signal propagation in coupled oscillators. One notable prediction
is that in coupled oscillators the response amplitude as well as the dynamics is
independent of the time-delay parameter ˛ when the number of coupling terms is
only one (L D 1). The system exhibits undamped signal propagation for appropriate
choices of the parameters and these choices of parameters can be determined from
the theoretical approach. We wish to stress that in the coupled oscillators system
(2), even though only the first oscillator is driven by the high-frequency periodic
force, fascinating results on signal propagation are obtained by the action of the
unidirectional coupling with multiple time-delayed terms.
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