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H I G H L I G H T S

� The dynamics of three interacting cell populations of tumor cells, healthy host cells and immune effector cells is discussed.
� Transient chaotic behavior for a certain choice of parameters takes place before extinction of healthy and immune cells.
� The method of partial control is applied to avoid the extinction of the healthy tissue.
� The difficulties of applying such control method at the present state-of-the-art of cancer therapies are discussed.
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a b s t r a c t

We consider a dynamical model of cancer growth including three interacting cell populations of tumor
cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system
displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a
boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves
chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell
populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose,
we apply the partial control method, which aims to control transient chaotic dynamics in the presence of
external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells
and the extinction of healthy tissue. The possibility of using this method compared to the frequently used
therapies is discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is the result of an uncontrolled proliferation of tumor cells
within a tissue that eventually can spread to new locations in the
body. The loss of cooperative behavior of cancer cells arises as a
consequence of accumulated mutations, and yields a complex evolu-
tionary scenario in which tumor and healthy cells compete for space
and scarce resources. Mathematical modeling has proven to be a
useful tool for the understanding of many features concerning the
complex interactions between tumor and healthy cells (Bellomo et al.,
2008; Bajzer et al., 1996; Kuznetsov et al., 1994; d'Onofrio, 2005).
Based on how the tumor tissue is represented, a vast number of
cancer growth models fall into two main categories: discrete models
and continuum models. The discrete cell based models are capable of
describing biophysical processes in significant detail, considering the
individual cells governed by a precise series of rules. However, for
large-scale-systems, this method is very demanding and requires

sophisticated computer simulations. An alternative to discrete meth-
ods is provided by the continuum approach, where tumors are treated
as a collection of tissue, considering, among other possible elements,
the description of densities or cell volume fractions and cell substrate
concentrations. More particularly, carcinogenesis population-based
models have often been used to study different aspects of tumor
progression and settle therapy protocols (Sachs and Hlatky, 2001;
Kirschner and Panetta, 1988; De Pillis and Radunskaya, 2003; De Pillis
et al., 2005, 2006; Pinho et al., 2002; Nani and Freedman, 2000;
Placeres Jiménez and Hernández, 2011; Freedman and Pinho, 2009;
Panetta and Adam, 1995). Among these works some use ODE models,
and frequently divide the problem into two clearly differentiated
parts. The first one sets and describes the model itself, which
generally consists of some Lotka–Volterra equations describing
growth and death of cell populations, as well as competition between
them. The second part is devoted to establish a treatment protocol,
mainly chemotherapy, immunotherapy or radiotherapy, to reduce the
tumor population in an optimal manner. Even though most of these
models deal with more than two dimensions, not many of them (Itik
and Banks, 2010; Letellier et al., 2013; Saleem and Agrawal, 2012;
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Ahmed, 1993) have seriously considered the situation in which
cell populations behave in a chaotic fashion. From our point of
view, the main reason why this occurs is that, in spite of the fact
that there is experimental evidence of deterministic chaos in tumor
cell populations (Wolfrom et al., 2000), in general evidence is not
abundant and clear enough. Although chaotic dynamics of a growing
tumor seems to be uncommon, it is more probable to appear when
therapies are considered. Therefore, we think that chaos should not be
disregarded in the study of tumor progression. In particular, as far as
we are concerned, no one has mentioned the possibility of finding
transient chaos in the populations of these tumor models. We believe
that, since complex interactions take place between neoplastic,
stromal and immune response cells, it is likely for transient
chaotic dynamics to happen before tumor dominates the struggle.
On the other hand, several methods to control transient chaos have
been proposed along the last decades (Tèl, 1991; Schwartz and
Triandaf, 1996; Kapitaniak and Brindley, 1998; Yang et al., 1995;
Aguirre et al., 2004). Among them, the partial control method
(Zambrano and Sanjuán, 2009; Sabuco et al., 2009, 2012a, 2012b)
aims to control systems displaying chaotic transients in the presence
of certain external disturbances (usually noise), using smaller controls.
The main idea of partial control is to take advantage of the Cantor set
structure embedded in a region of phase space containing the
remnant of a chaotic attractor to avoid escaping from it by small
perturbations. In this manner, we prevent the occurrence of a
particular dynamics.

The purpose of this work is to show and control the existence
of transient chaotic dynamics for certain values of the parameter
space in a three dimensional cancer model consisting of interact-
ing cell populations, similar to the one used in De Pillis and
Radunskaya (2003), Itik and Banks (2010) and Letellier et al.
(2013). These three populations are the tumor cells, the healthy
host cells and the immune effector cytotoxic T-cells present at the
tumor site. After examining the phase space of the model for the
given parameters, and the boundary crisis leading to transient
chaotic dynamics, the partial control method is applied to avoid
tumor escape and uncontrolled growth, preventing from extinc-
tion of the healthy tissue. We discuss the main difficulties of
applying such control method at the present state of the art of
cancer treatments, as well as some others inherent to chaotic
behavior.

The paper is organized as follows. In Section 2 we describe the
model and discuss a set of parameters for which chaos takes place.
We show the phase space portrait, study the equilibria of the
system and comment the boundary crisis leading to transient
chaotic dynamics. In Section 3 we explain the main features of the
partial control method, and apply it to the cancer model in Section
4, preventing tumor escape. Finally, Section 5 is devoted as usual
to conclusions and discussions.

2. Model description and phase space analysis

2.1. The model

We develop our investigations with a model used in Itik and
Banks (2010) and Letellier et al. (2013). It is the same three
dimensional Lotka–Volterra model than the one described in De
Pillis and Radunskaya (2003), with the only difference that no
constant input of effector immune cells is considered. Such input
can be used to model innate immunity (De Pillis et al., 2005) or an
immunotherapy protocol (Kirschner and Panetta, 1988). Each of
the variables represents a cell population, namely T(t) the tumor
cells, H(t) the healthy host cells near the tumor site, and E(t) the
effector immune cells. The growth of cancer and host cells is
assumed to be logistic with growth rate ri and carrying capacity ki.

Both compete with each other, the competition terms being given
by aij. The production of immune cytotoxic T-cells is triggered by
antigen presenting cells. Assuming that this process occurs at a
enough smaller time scale than the one corresponding to tumor
growth, the stimulation of the immune system by the tumor
specific antigens can be considered to act instantly and modeled
by a Michaelis–Menten law. The immune effector cell production
rate in response to the presence of tumor cells is given by r3, and
the steepness of the response curve is associated to k3, the value of
the tumor cells at which the immune response rate is half of the
maximum production, where the response curve saturates. These
cells only compete with cancer cells and in their absence they die
off with a constant per capita rate d3. Therefore, the system of
differential equations is

_T ¼ r1T 1� T
k1

� �
�a12TH�a13TE

_H ¼ r2H 1�H
k2

� �
�a21HT

_E ¼ r3
ET

Tþk3
�a31ET�d3E: ð1Þ

The nondimensionalization and parameter reduction of this
system are thoroughly studied in Itik and Banks (2010), yielding
the set of equations

_x ¼ xð1�xÞ�a12xy�a13xz
_y ¼ r2yð1�yÞ�a21yx

_z ¼ r3
zx

xþk3
�a31zx�d3z: ð2Þ

2.2. Equilibria of the system

An exhaustive phase space analysis has been carried out in the
previously cited references (De Pillis and Radunskaya, 2003; Itik
and Banks, 2010). In the following, we restrict our attention to a
particular set of parameter values for which the system has a
chaotic attractor close to a boundary crisis. The choice of para-
meters in Eq. (2) is a12 ¼ 0:5, a21 ¼ 4:8, a13 ¼ 1:2, a31 ¼ 1:1,
r2 ¼ 1:20, r3 ¼ 1:291, d3 ¼ 0:1 and k3 ¼ 0:3. The only significant
differences of this setting compared to the one arranged in De
Pillis and Radunskaya (2003) are given by parameters a12 and r3,
which take higher values in the present case. The biological
meaning of this choice is that tumor cells are more aggressive in
their competition with normal cells, and that the recruitment or
response of the immune effector cells due to the presence of
tumor cells is much stronger.

We now describe all the nullclines and equilibria for the
current set of parameters. The fixed points of the system are given
by _x ¼ _y ¼ _z ¼ 0 which yields the set of equations

0¼ xð1�x�a12y�a13zÞ
0¼ yðr2�r2y�a21xÞ
0¼ zððr3�k3a13�d3Þx�a31x2�k3d3Þ: ð3Þ

Nullclines can be read directly from Eq. (3). There is a total of six
nullclines: the x–y, y–z and x–z planes, the plane Π1, represented by
the implicit equation xþa12yþa13z¼ 1, the plane Π2, given by
r2yþa21x¼ r2, and the planesΠ3 andΠ4 for x the constant solutions
of the quadratic equation a31x2�ðr3�k3a13�d3Þxþk3d3 ¼ 0. If we
focus on the positive octant Rþ � Rþ � Rþ , the intersections of the
different nullclines yield six different fixed points xni , as shown in
Fig. 1. We give the numerical values of the fixed points and also
analyze their stability by examining the eigenvalues of the Jacobian at
each of them.

The point xn1 is the origin ð0;0;0Þ, a saddle with two positive
eigenvalues corresponding to the x-axis and the y-axis, and a
negative eigenvalue along the z-axis. The point xn2 ¼ ð0;1;0Þ
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represents the healthy state for which there are only normal cells.
This fixed point is a saddle point too, but with two stable directions
(negative eigenvalues) and one unstable direction (positive eigenva-
lues). The stable eigenvectors are contained in the x¼0 plane, so if the
dynamics enters this plane, it eventually reaches the healthy solution.
The point xn3 ¼ ð1;0;0Þ has its three eigenvalues smaller than zero,
representing a stable solution for which there are only tumor cells.
Since this point is the one we want to avoid falling into, we have
colored it in red. The fixed point xn4 ¼ ð0:75;0;0:21Þ is also a saddle
fixed point with two stable and one unstable directions. A stable and
an unstable direction are in the plane y¼0, while the remaining
stable direction is given by the eigenvector (0.23,0.97,0.02). The two
stable directions are related to the stable manifold separating the
basins of attraction of the chaotic attractor and the tumor stable fixed
point. The fixed points xn5 ¼ ð0:04;0;0:8Þ and xn6 ¼ ð0:04;0:85;0:45Þ
are two spiral-saddles. For xn5 the spiral is stable and is contained in
the y¼0 plane, while the unstable direction is given by the eigen-
vector ð�0:02;1:00; �0:03Þ, almost pointing parallel to the y-axis.
The other spiral-saddle shows opposite stability, i.e., the spiral is
unstable and the stable direction is given by the eigenvector
ð�0:02; �1:0;0:02Þ. The interplay of these two “facing” spiral-
saddles is responsible for the heteroclinic chaotic motion of the
system, which is the reason why we paint them blue. The attractor
together with the fixed points is shown in Fig. 2(a). The Lyapunov

exponents of the chaotic attractor are λ1 ¼ 0:022, λ2 ¼ 0 and
λ3 ¼ �0:76, so its Kaplan–Yorke dimension is dL ¼ 2:027.

2.3. Boundary crisis and transient chaos

It would be expected that, decreasing the level of the immune
response to tumor cells, the cancer state xn3 should asymptotically
prevail over the chaotic attractor. As is well known, whenever two
attractors coexist in phase space, the stable manifold of a saddle
fixed point between them separates their basins of attraction. If
one of these attractors is chaotic, when we vary a parameter, it
might happen that it collides with the stable manifold of the
saddle. Such phenomenon is formally known as a boundary crisis,
and allows the chaotic attractor to access the basin of the stable
attractor, falling into it. Indeed, when we decrease the value of the
immune response r3 from 1.291, the chaotic attractor collides with
the stable manifold of xn4 at an approximated critical value
rc3 ¼ 1:2909. For values of r3 below the critical value, the dynamics
of the system eventually sinks into xn3. However, if the value of the
parameter is close to the boundary crisis, the chaotic attractor
persists as a remnant (or ghost), so larger or shorter chaotic
transients are observed before escaping into the stable attractor,
as shown in Fig. 2(b). The use of the partial control method to
avoid ending in that attractor, which corresponds to the tumor-
only state, is the pursued objective through Section 4. In Fig. 3 we
show a two-dimensional fold of the parameter space, correspond-
ing to the rate of production of immune cells r3 and the rate of

Fig. 1. This figure shows the phase space with the nullclines and the fixed points.
The planes are the different nullclines, with the fixed points placed at some of their
intersections. The green points are saddle fixed points, the red point is the tumor
stable fixed point and the blue points are the two spiral-saddles that give rise to
chaotic motion. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 2. (a) Chaotic attractor before the crisis. Again saddle fixed points are marked in green, the tumor attractor is shown in red, and the spiral-saddles are painted blue.
(b) The same chaotic attractor and fixed points after the crisis. Now trajectories do not stay forever in the chaotic attractor, but fall into the tumor stable equilibrium after a
long transient. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. A region of the parameter space showing how the variation of the
parameter r3 induces the crisis for many different values of the parameter r2. The
boundary between the two regions contains the critical values of r3c .
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growth of healthy cells r2, making a clear distinction between
parameter regions before and after the crisis.

3. The partial control method

3.1. Basic aspects

Transient chaos is a physical phenomenon that occurs in
systems for which trajectories behave chaotically during some
finite amount of time in a region Q of the phase space, until they
move toward a final state outside Q. The underlying topological
structure in Q responsible for that type of motion is a Cantor set-
like structure known as the chaotic saddle. Manifestations of
transient chaos are wide, and many examples can be found in
the literature (Tèl and Lai, 2008; Chen and Aihara, 1995; Tèl et al.,
2005). We show transient chaotic dynamics for our model in Fig. 2(b).
Partial control is a feedback control method aimed to maintain the
transient chaotic dynamics as long as desired, avoiding the escape
from Q. Things get evenmore complicated if we consider the existence
of some unpredictable external disturbances acting on the system.
Since most physical systems interact with their environment, realistic
situations always have to deal with a certain amount of noise. The
striking advantage of the partial control technique is that it allows the
avoidance of the undesired event sometimes using smaller controls
than the disturbances. If we consider a map f modeling the dynamics
of the system, the whole process is mathematically expressed as

qnþ1 ¼ f ðqnÞþξnþun; ð4Þ
where ξn is the noise at step n, and un is the feedback control applied
at the same iteration. In our case we have a continuous system, and a
Poincaré map must be arranged to apply partial control. In addition,
the noise and the control are bounded and moreover the upper
control bound is smaller than the upper noise bound, that is,

ξ04u040 junjru0 jξnjrξ0: ð5Þ
Noises and controls obeying these conditions are called admis-

sible, and trajectories fulfilling Eq. (4) are equally named.

3.2. The safe set and the asymptotic safe set

Consider a point q0 in the set Q, the one we want to keep the
dynamics in. We say that such point is safe if for any iteration qn of
this point and any admissible disturbance ξn there exists an
admissible feedback control un such that qnþ1 remains in Q. Note
that if q0 is safe, any of its iterations is safe as well. More generally,
if any point in S�Q is a safe point, we say S is a safe set. Examples
of safe sets for different systems can be seen in Sabuco et al.
(2012a). The following lines are devoted to describe the computa-
tion of the safe set.

The computation of the safe set can be achieved by means of
the Sculpting Algorithm (Sabuco et al., 2012a), which proceeds
iteratively in the following manner. A point in the safe set has to
verify that any of its images under Eq. (4) is in S, so, beginning with
Q, we compute the fattened set Qþu0, this is to say, we add to Q all
points that are at a distance u0 from its boundary. Then we
eliminate every point in Qþu0 that is at a distance ξ0 from its
boundary, obtaining Qþu0�ξ0 (see Fig. 4). All points in Q whose
images are in Qþu0�ξ0 are safe for one iteration. We call this set
Q1 � Q and insist that every point in Q1 can be kept in Q for one
iteration. Now we repeat the procedure starting with Q1 and
obtain Q2, the set of points that are safe for two iterations. The set
Q1 is the largest safe set in Q. Topological properties granting the
convergence of the iterates are given in Sabuco et al. (2012b). Here
we just recall that if Q is compact, all Qn are compact and that the
infinite intersection of non-empty compact sets ⋂1

n Qn is non-

empty. In practice we have to use a grid with limited resolution to
compute S, so the procedure converges for some finite n.

Intuitively, if noises are not too high, all the partially controlled
trajectories must end in some region around the original attractor
(or the ghost). This means that there exists a trapping region
where trajectories enter after a sufficiently high number of
partially controlled iterations and never leave. This idea leads to
the definition of the largest asymptotic safe set A. Such set is
invariant under Eq. (4), so any of its points must be accessible from
any other point in it by a partially controlled iteration. Clearly
stated, the largest asymptotic safe set is the largest invariant set
under partial control. For the rigorous mathematical formalism see
Sabuco et al. (2012b). The asymptotic safe set can be computed
using a similar Sculpting Algorithm to the one described in the
previous paragraph. Starting with S, we compute all of the
accessible points under partial control from every point in it, this
is to say, we compute ðf ðSÞþu0þξ0Þ⋂S. We call this new set S1 and
use it to compute S2, and so on until obtaining S1. Another
algorithm used in Sabuco et al. (2012b), called the Growing
Algorithm, operates locally starting at some point q in S and
computing all the points accessible by any partial control iteration
ðf ðqÞþu0þξ0Þ⋂S. However, it might happen that A contains other
invariant subsets in it, so that the Growing Algorithm starting at
some particular point q in A gives, as a result, a set that is smaller
than the largest one. In the next section we introduce the smallest
asymptotic safe set computed with the Growing Algorithm, and
show that partially controlled trajectories cover it densely. There-
fore, such set is the attractor of the partially controlled system.

4. Avoiding extinction of healthy cells

Although partial control could be carried out in the whole
phase space, computational efficiency exhorts to use some

Fig. 4. An iteration of the Sculpting Algorithm. (a) An initial set Q to apply partial
control. (b) Fattening realized by the addition of points at a distance u0 from the
boundary of Q. (c) The resulting set Qþu0. (d) The set Qþu0�ξ0, result of the
shrinking of Qþu0, which is performed by eliminating the points that are at a
distance ξ0 from it. The set Q1 would consist of all the points in Q whose images are
in Qþu0�ξ0 in one iteration. Even though ξ04u0, as long as we sculp the
successive sets Qn, the Cantor construction of the chaotic saddle or equivalently,
the sets of points that do not escape from the region Q after some particular
iteration are glued together by the control if such iteration is high enough, which is
related to the convergence of the Sculpting Algorithm.
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subspace with a dimension as small as possible. This way, the first
thing we have to do to apply partial control is to select a Poincaré
section. Any two-dimensional manifold intersecting the chaotic
attractor serves for this purpose, but for simplicity, we choose a
plane Π at some fixed value of the immune cell population, i.e., at
a constant z value. According to the reasons explained ahead, we
use z¼0.255. This Poincaré section appears in green in Fig. 5(a)
and the associated Poincaré map is shown in Fig. 5(b). The value of
r3 after the crisis is set to 1.207. Since we know that eventually
trajectories approach xn3, a simple way to avoid this event is to
assure that any iteration comes back to the Poincaré section Π.
With this purpose, we take Q as the set of all points in that plane
that comes back to it at least once before escaping to the attractor.
In fact, this set resembles very much the basin of attraction of the
chaotic attractor for a parameter value of r3 above the critical
value. The set Q is shown in Fig. 6. The reason why we choose
z¼0.255 is that for such value of the immune effector cell
population the set Q is the biggest, and the control/noise ratio is
the smallest.

Concerning disturbances on the system, these models usually
use multiplicative noises (Spagnolo et al., 2003), so that external
perturbations acting on them modify the cell populations
through some parameter fluctuations. Note that the use of
additive noises could lead to negative values of populations,
which have no physical/biological meaning. Nevertheless, partial
control acting on some parameter of a dynamical system is still to
be attained. For the moment, we take additive noises, considering
that those leading to negative values of the cell populations are
meaningless, and therefore rejected. If preferred, one can think
that the noise probability distribution varies as we approach to a
zero value of any coordinate of the system, which is somehow
equivalent to considering multiplicative noises. Anyway, this
does not require modifying the noise and control conditions
given in Eq. (5), since they cover the rejected cases. Another
important issue is that the use of continuous noises modifies the
set Q, because some points in the non-disturbed case that would
come back to Π do not return when disturbances are present.
Nevertheless, to simplify things, we will suppose that noises act
only on the Poincaré section and assume a correspondence
between the maximum continuous noise amplitude and the
discretized one, which are related by eλ1τmax , λ1 being the max-
imum Lyapunov exponent and τmax the maximum recurrence
time of a point in the set Q. The probability distribution of the
noise is then considered uniform and takes values according to
Eq. (5), with bounds ξ0 ¼ 0:02 and u0 ¼ 0:013, which means a
control/noise ratio ρ¼ 0:65.

The Sculpting Algorithm is applied to a 3000�3000 grid to
obtain the safe set, which is shown in Fig. 7. Any trajectory starting
in S can be controlled to stay in S as much time as desired. Using
this safe set, we compute the largest asymptotic safe set A and also
the smallest asymptotic safe set I� A� S. The former is computed
with the Sculpting Algorithm, while the latter uses the Growing
Algorithm starting with a point in A. Both sets are shown in Fig. 8.

As stated in Sabuco et al. (2012b), potentially there could be
more that one asymptotic safe set. In fact, we have found up to
four asymptotic safe sets with the growing procedure. One of them
is the smallest asymptotic safe set, which is contained in all the
remaining. We claim that there is not a smaller invariant set under
partial control. Rigorously stated, I is irreducible under partial
control transformations. After a sufficient amount of time trajec-
tories enter in I and do not escape, covering it densely, as shown in
Fig. 9. We perform a simulation of the partially controlled system
for 6000 iterations, proving its success to prevent escape from the
chaotic attractor towards the stable tumor fixed point (Fig. 10).

In spite of this mathematical and numerical achievement, it is
important to give biological and medical significance to controls.
The idea of tumor therapies relies on a very simple fact: kill by all
possible means the tumor cells. Generally, most cancer therapies,

Fig. 5. (a) A Poincaré section Π for z¼0.255. The trajectory returns to it several times (red points) before escaping to the attractor xn3, contained in the green ball. (b) The
return map associated to the green section in (a). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. The set Q, a subset of ½0;1� � ½0;1� formed by all initial conditions on
z¼0.255 that return at least once to the Poincaré section before escaping to the
attractor. The purpose of partial control is to maintain trajectories in the blue
region, avoiding the escape through the long white tusk that transverses it and the
small white piece on the bottom right corner. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
paper.)
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although designed to be as selective as possible, entail the
simultaneous destruction of healthy and tumor tissues. This is in
contrast with the partial control method that deals with cell
populations separately and requires not only their destruction,
but also to increase them according to the safe sets. Another
difficulty is due to the fact that perturbations of the cell popula-
tions are practiced directly on the dynamical variables, and not
through relevant parameters. In this manner, we can only provide
a qualitatively relation between this method and the usual therapy
mechanisms. For instance, chemotherapy treatments destroy cell
populations by the injection of cytotoxic drugs. The great advance
of biomedical engineering suggests that a day may come for which
selective drugs allow to control cell populations in an independent
way, and therefore chemotherapy could be related to the decrease
of the cell populations in the application of the partial control
method. On stimulation of cellular growth there is also research
(Seong et al., 2006; Cottage et al., 2012), so the possibility of
increasing cell populations is not harebrained. In fact, these are
rather counter-intuitive things, since as we have shown, occasion-
ally we have had to increase the number of cancer cells and
destroy healthy cells to control the tumor escape. In the case of
immunotherapy, a more natural choice of the Poincaré section
would be a constant value for the healthy cells. In such case a

Fig. 7. The safe set obtained from Q with a maximum admissible noise of ξ0 ¼ 0:02
and a maximum admissible control u0 ¼ 0:013.

Fig. 8. (a) The safe set in blue containing the largest asymptotic safe set (red) obtained with the Sculpting Algorithm. (b) The smallest asymptotic safe set (green) obtained
with the Growing Algorithm starting at some point in the largest asymptotic safe set, close to the original attractor. Note how this safe set encloses the attractor in Fig. 5(b).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. A partially controlled trajectory for 6000 iterations starting close to the
original attractor. The black points are the iterates, which cover densely the
smallest asymptotic safe set (green). We see that the trajectory stays close to the
attractor avoiding escape. The radius of the two circles in the bottom-right part of
the image represents the maximum control u0 (yellow) and the maximum noise ξ0
(black). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 10. The partially controlled attractor for 1000 iterations (of the Poincaré map).
Note that it does not get as close to the saddle fixed point xn4 as it does without
control.
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reinforcement of the immune system could serve to carry out the
increase of this cell population.

Another interesting point is that the chaotic attractor in Fig. 2(a)
oscillates between regions where there is a very low number of
cancer cells and a high number of healthy ones to others where the
opposite situation is found. A similar oscillatory regime also appears
in other works with this model (Itik and Banks, 2010; Letellier et al.,
2013), and it is characteristical of Lotka–Volterra predator–prey
systems. Whenever this happened at some stage of tumor growth,
the precise instant of the application of a therapy would be crucial.
This means that a single therapy session applied at the right time
might be enough to annihilate the tumor, while many sessions
wrongly applied could result in a great damage to the patient.
Furthermore, the chaotic behavior of the system implies that
periodic controls acting on it might not have the desired effect.
Finally, suppose that we could perform the required controls, a
physician would ask how much time do we have to wait until we
reach the Poincaré section again, or equivalently, how often therapy
controls need to be applied. Certainly, as we have stated, the
recurrence time of each point is different, so, the way we have
tackled the problem, no periodic or continuous protocols can be
used. We show the recurrence time of every point in the Poincaré
section in Fig. 11. The idea of using non-periodic protocols is not
new, and cases can be found in the literature, as for example the
optimal therapy protocols used in De Pillis and Radunskaya (2003),
or the modeling of intermittent hormone therapy of prostate cancer
developed in Ideta et al. (2008), Hirata et al. (2010) and Suzuki et al.
(2010).

5. Conclusions and discussion

We have shown the possibility of preventing a tumor escape in
a chaotic cancer model in the presence of some external dis-
turbances, applying small controls to the cell populations. This has
been achieved by means of the partial control method, which
applies to transient chaotic situations in the presence of external
disturbances. The fact that controls are smaller than the external
disturbances is promising, since the side effects of drugs and
radiation are well known. On the other hand, the main difficulties
at the current stage of development of the partial control method
to maintain healthy cell populations arise from two simple facts. It
requires to be able to modify cell populations directly and all of a
sudden, implying an enormous accessibility to the system, and the

treatment of cells independently. This is in contrast to the regular
procedure of most cancer treatments that usually decrease all cell
populations by complex processes. Therefore, the implementation
of partial control to parameter variations would be convenient.
Another surprising aspect is that sometimes it has been required
to increase cell populations. Although striking, if we consider
common tumor therapies, this reveals important consequences of
chaotic dynamics on tumor progression and therapy protocols.
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