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A B S T R A C T

Extinction of a species is one of the most dramatic processes in ecology. Here we use an extended version

of the McCann–Yodzis three-species food chain model proposed by Duarte et al. (2009), where a

cooperative hunting term was added to the original McCann–Yodzis model and where the three species

coexist: resources, consumers and predators. We consider a situation for which a chaotic transient is

present in the dynamics implying the predators extinction. Taking into account that the system is

affected by external disturbances, we implement a new control method, the partial control method, with

the goal of avoiding the extinction with a control applied smaller than the external disturbances of the

system. We have also shown that the partial control method implies smaller controls.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Models of predator–prey systems constitute an important
research field in ecology. Different dynamical behaviors, like
periodic orbits or strange attractors are frequently present in these
models, suggesting the complexity that the interaction between
species may reach. From an ecological point of view, one of the
most dramatic events occurs when the populations are driven by
the dynamics towards an undesirable state. Overpopulation or
species extinction are typical situations that may require expen-
sive efforts in the attempt to control the process. In this sense, a
good understanding of the underlying causes constitutes a
necessary step previous to design a suitable control strategy.

In this work, we consider a particular dynamical behavior called
transient chaos. This phenomenon appears in many systems such
as a thermal pulse combustor (In et al., 1997), a periodically driven
CO2 laser (Dangoisse et al., 1986), or a voltage collapse (Dhamala
and Lai, 1999). The main cause generating this transient behavior
from a topological point of view lies at the presence of a chaotic
saddle in the phase space. This topological object arises when a
chaotic attractor collides with its own basin boundary producing a
transient chaotic behavior of trajectories before eventually
escaping towards an external attractor (see Sabuco et al., 2010;
Lai and Tél, 2011). Likewise, a wide variety of ecological models
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have been proposed (Hastings and Higgins, 1994; McCann and
Yodzis, 1994; Sinha and Parthasarathy, 1996; Gyllenberg et al.,
1996; Vandermeer and Yodzis, 1999; Schreiber, 2001) explaining
successfully the process of species extinction, as the consequence
of the existence of a boundary crisis in phase space. This significant
result suggests the importance to deepen in the knowledge of
transient chaotic behavior in the context of ecological complexity.

With the purpose of studying the transient chaos in an
ecological model, we have chosen a three-species food chain
model proposed by Duarte et al. (2009). This model is based on the
McCann–Yodzis model (McCann and Yodzis, 1995), where three
species coexist: resources, consumers and predators. The interest
of this model relies on the simple and plausible explanation of the
problem of species extinction, without the necessity to consider
temporal or spatial variations and external factors. In addition, the
parameters of this model are ecologically meaningful because they
were derived from bioenergetics (McCann and Yodzis, 1995).

Following this model, Duarte et al. (2009) have proposed an
extended model with the possibility of predators to cooperate to
hunt. This behavior has been found in several different situations
such as populations involving mammals (Stander, 1991; Mills,
1978), fishes (Cook and Streams, 1984; Major, 1978), insects
(Nakasuji and Dyck, 1984) and spiders (Rypstra, 1985; Ward and
Enders, 1985), see also Dugatkin (1997). So far, this behavior has
typically been modeled as a cooperation strategy in the context of
game theory (Packer and Ruttan, 1988), while the theoretical
approaches in the context of nonlinear dynamics are weak. With
this motivation, Duarte et al. (2009) have added a simple term in
the original McCann–Yodzis model, which involves that some
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individuals cooperate during prey’s hunting. This term introduces
a small Allee effect in the system, that can be adjusted depending
on the different degrees of cooperation, recovering the original
McCann–Yodzis model when no cooperation exists.

The dynamics of this extended model presents two different
behaviors depending on the values of two parameters. In one case,
all species coexist in a chaotic attractor, while in the other,
transient chaos appears, involving the extinction of the predators
population. Duarte et al. (2009) explore how these two states were
related with the degree of cooperation, and they found that the
extinction of predators is stimulated by his own cooperation
strategy, that is, the increase of cooperation drives the predators to
the extinction. This relevant result is consistent with recent studies
which suggest the importance of intraspecific competition
between predators in the stabilization of the dynamics of the
three-species food chain models (Deng, 2006).

In the case that the system falls in the extinction state, the
question that naturally arises is the possibility to avoid it,
sustaining the dynamics in the transient behavior. Following this
idea, Duarte et al. (2009) applied the control method described by
Dhamala and Lai (1999). They showed that, in absence of
disturbances, the transient chaos can be sustained avoiding the
predators extinction. However, all real systems are affected by
certain external disturbances, producing large deviations in a
nonlinear deterministic system (Weis and Knobloch, 1990). In fact,
many control methods that are effective without disturbances, can
fail when the disturbances are present.

In recent years, a novel control method called partial control has
appeared in the literature (see Zambrano et al., 2008; Zambrano
and Sanjuán, 2009; Sabuco et al., 2012a,b). This control method is
applied in situations where transient chaos is present and the
system is subjected to external disturbances. The main result of
this paper is the successful control of trajectories in the ecological
model introduced in Duarte et al. (2009). Furthermore, we show
that the amount of control needed is even smaller than in other
control strategies.

The structure of the paper is as follows. Section 2 is devoted to the
description of the ecological model. The main ideas of the partial
control method and its application to the model is described in
Section 3. And in Section 4 the safe sets are computed. A comparative
analysis of the partial control method with the one used in Duarte
et al. (2009), is given in Section 5, where we show that the amount of
control needed by using the partial control method for a given
amount of noise might be much smaller than in other control
methods. Finally, some conclusions are drawn in Section 6.

2. Description of the ecological model

We use a three species food chain model proposed by Duarte
et al. (2009). This model is an extension of the McCann–Yodzis
model, which describes the dynamics of the population density of a
resource species R, a consumer C and a predator P. In addition,
Duarte et al. (2009) propose the introduction of a nonlinear term
with the aim to model the possibility of the predators to cooperate
to hunt. The resulting model is given by the following set of
nonlinear differential equations:

dR

dt
¼ R 1 � R

K

� �
� xcycCR

R þ R0

dC

dt
¼ xcC

ycR

R þ R0
�1

� �
� cðPÞ

y pC

C þ C0

dP

dt
¼ cðPÞ

y pC

C þ C0
�x pP:

(1)

The biological assumptions of this model are: (i) continuous
growth and overlapping generations are allowed for each species.
(ii) The resource population grows logistically. (iii) Consumers and
predators dies off exponentially without food. (iv) The feeding rate
of consumers and predators saturates at high food levels. Its is
important to point out that we are assuming populations big
enough to dismiss lattice effects (Henson et al., 2001) which in the
case of small populations could change dramatically the dynamics
and therefore it should be considered in any control method.

Following McCann and Yodzis (1995), we fix the parameters as:
xc = 0.4, yc = 2.009, xp = xi = 0.08, yp = 2.876, R0 = 0.16129 and
C0 = 0.5. The term c(P) = xp(1 � s)P + xisP2 in the equations
represents the reproduction kinetics of predators. In this term
Duarte et al. (2009) included the parameter s 2 [0, 1], which
reflects the fraction of predators that cooperate to hunt. Note that
the McCann–Yodzis model is a particular case of this model when
s = 0.

The interest of this model lies in the fact that the dynamics
presents transient chaos depending on the values of the carrying
capacity K and the degree of cooperation s. Analyzing the
nonlinear dynamics of the system, it is possible to find the
different pair of values (K, s) for which the boundary crisis takes
place. For instance, fixing K = 0.99, the boundary crisis appears at
sc = 0.04166. This critical value separates the two different
dynamical regions. Before the crisis, for s < sc, two attractors
coexist in phase space: one chaotic attractor where all the species
coexist, and one limit cycle where no predators exist (see Fig. 1a).
However, after the crisis (Fig. 1b), the only asymptotic attractor is
the limit cycle where no predators exist. Such a crisis becomes the
limit cycle in the global attractor. Therefore a trajectory close to the
chaotic saddle follows the typical time series represented in Fig. 1c,
where initially the predators population has a chaotic transient
and then it collapses to zero becoming extinct.

Under these conditions, it is clear that in the absence of an
external action, the population of predators is doomed to
extinction. In this sense, a question reaches naturally: is it possible
to avoid the extinction? Obviously, the answer depends on the
realistic possibility to perturb the system to sustain the transient
chaos behavior. One approach might be to decrease the resource
carrying capacity K or the degree of cooperation between predators
s. However, from an ecological point of view, to change these
parameters is not always accessible or takes up a large amount of
time acting over the system. Nevertheless, it is possible to modify
the dynamics, acting directly on a given dynamical variable. In this
sense, we can find in the literature a wide number of control
methods, that in different ways, deal with the same problem. We
find methods like the ‘‘target oriented control’’ or ‘‘proportional
feedback’’ that are able to stabilize the unstable or even the chaotic
dynamics around an asymptotic stable equilibrium and have been
successfully applied to ecological models (Carmona and Franco,
2011); Dattani et al., 2011; Franco and Peran, 2013). Other
strategies, like the ‘‘adaptive limiter control’’, reduce the fluctua-
tions of the populations, with the aim of bounding the dynamics
within a certain range and therefore avoiding undesirable or
dangerous escapes (Franco and Hilker, 2013). In particular this
method preserves the chaotic dynamics, a feature that we consider
highly desirable in order to maintain the natural evolution of the
ecological system. Finally, we have the method described in
Dhamala and Lai (1999) that has also been applied in Duarte et al.
(2009), attempting to avoid the extinctions identifying a escape
region and not allowing the system to enter inside. Surprisingly, in
the literature it is very difficult to find control methods applied to
systems with noise, which we consider that is something rather
common in all real systems, where the noise will enclose all the
uncertainty about the dynamics of the system, like modeling
mismatches or external disturbances. In addition, we consider that
it would be very helpful to have a method being able to fix an upper
control bound that ensures the control of the system regardless of



Fig. 1. Dynamics of the extended McCann–Yodzis model proposed by Duarte et al. (2009) from Eq. (1). Depending on the values of the parameters (K, s) different dynamics are

possible. Fixing K = 0.99, the boundary crisis appears at sc = 0.04166. (a) Before the boundary crisis (K = 0.99, s = 0), there are two possible attractors depending on the initial

conditions: one chaotic attractor where the three species coexist, and one limit cycle where only the resources and consumers coexist. (b) After the boundary crisis (K = 0.99,

s = 0.07), the limit cycle is the only asymptotic attractor. (c) Time series of the predators population corresponding to the case (b), where the chaotic transient before the

extinction is shown.
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the system evolution. With this motivation a new control method
is introduced in the next section. By acting just over the population
of predators during discrete times, we will show how this method
is able to sustain the dynamics in the transient chaos regime.

3. Application of the partial control method

The partial control method has been successfully applied to
several paradigmatic dynamical systems, such as the Hénon map
and the time-2p map associated to the Duffing oscillator (Sabuco
et al., 2012a,b) for a parameter choice where the trajectories escape
outside a certain region Q in phase space. In particular, when we
consider the dynamics after a boundary crisis, the system
possesses a transient chaotic behavior in a bounded region in
phase space, previous to a situation in which the trajectory escapes
towards an attractor outside this region. When the dynamics is
affected by noise, somehow it might help the trajectory to escape
from the region earlier. The goal of the partial control is to apply a
control in order to avoid the escape of the trajectory from this
region Q, and what is surprising is that the amount of control we
need is smaller than the external disturbance acting on the
dynamical system.

The presence of a boundary crisis in the ecological model, as
described in the previous section, and the requirement of a discrete
control, makes it especially suitable the application of the partial
control method to avoid the extinction of predators in this system.
To implement it, we need a map and to define a region Q in phase
space, where we want to sustain the dynamics. The complete
dynamics in presence of an external disturbance jn and after the
application of a control un is described by the iterative equation
qn+1 = f(qn) + jn + un. The only assumption we consider on the
disturbances and control is to be bounded, that is, jjnj � j0 and
junj � u0, and when this happens we say that we have admissible
disturbances and controls. A point q 2 Q is considered safe, if the
next iteration of this point f(q) under the action of the map and
affected by the external disturbance falls inside Q once a control
junj � u0 < j0 is applied. We can say that under the previous
considerations, a safe point is controlled and consequently remains
in Q with an applied control smaller than the disturbance. The set
of all safe points in Q is called the safe set. And there is an algorithm
called Sculpting Algorithm (Sabuco et al., 2012b), that computes
automatically the safe set given a map, a region Q in phase space
and admissible disturbances and controls. So that, our goal here is
to compute the safe set for the ecological model described in the
previous section. The Sculpting Algorithm works in such a way that
it rejects, in the first iteration, the points qn for which
qn+1 = f(qn) + jn need a control junj > u0 to get back to the region
Q. The points that survive are a subset of Q, and the process is
repeated until it finally converges. As a result, we obtain the safe
set containing all safe points, which provide those points that are
controlled with admissible disturbances and controls.

4. Finding the safe sets and controlled trajectories

Our goal now is to find the safe sets for our ecological model. We
have chosen the parameter values K = 0.99 and s = 0.07, that
corresponds to the region after the boundary crisis, since we are
interested in the transient chaotic regime.

In order to apply the Sculpting Algorithm to find the safe sets,
we need as basic ingredients a map, a region Q in phase space
where the map is acting and where we want the dynamics to stay
in, and an admissible choice of disturbances and controls. As a
consequence, the first step is to obtain such a map. In our case, a
one-dimensional map can be obtained from the three-dimensional
flow, by computing the local minima of the time series of P(t). As a
result, we obtain a set of points of the form (Rn, Cn, Pn), where Rn and
Cn are computed at the precise moment for which the P(t) time
series has a local minimum. This set of points generates an
approximately one-dimensional curve in phase space as shown as
a green line in Fig. 2.

In addition, the set of local minima is practically parallel to the
P-axis, where Rn and Cn are practically constant. This important
feature allows us to apply the control only to Pn. At this point, we
have to notice that we will not always be lucky in this sense, and
the potential to reduce the variables to control, will depend on the
particular structure of the chaotic saddle and the variable/s that we
will want to control.

Next, we build a one-dimensional map with the successive local
minima (Pn, Pn+1), where Pn denotes the nth local minimum. Notice
that this is not a discretization on time and therefore the return
times between two consecutive minima is not the same. In our case
we obtain typical return times within the range of 25–50 time
units. Since a particular initial condition yields only a few pair of
points (Pn, Pn+1), we simulate a large number of initial conditions to



Fig. 2. Set of local minima in phase space. Blue line: trajectories in phase plane (P, C) and (P, R). Green line: set of local minima of P(t) used to build the one-dimensional map. As

shown, the set of local minima is approximately parallel to the P-axis. (For interpretation of the references to color in this legend, the reader is referred to the web version of

the article.)
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obtain a big data set of the iterated map. At this point, we could use
this set of points directly to compute the safe set by the following
method. Due to the fact that we need to evaluate the image of Pn,
we could computed the expected image f(Pn) taking, for example,
the mean of the images of the nearest points belonging to the data
set. However this process is computationally expensive and
therefore we perform an accurate polynomial fitting to obtain
the analytical dependency Pn+1 = f(Pn), making easier the compu-
tation of the safe set.

In Fig. 3, we show the polynomial fit obtained from the set of
local minima of the time series of P(t). Notice that, the iterates of
any initial point for which Pn > P*, follow a chaotic dynamics until
they finally asymptotes to zero when it crosses a critical value
Pn < P*, which actually implies the extinction of the predators
population.

Now, we proceed to introduce an upper bound j0 for the
disturbances in the return map. The fact that we only apply the
disturbance to the Pn variable and not to Rn or Cn might seem
restrictive, but we have to take into account that the local minima
of P(t) is placed along the unstable manifold of the chaotic saddle
(see Fig. 2). Therefore, the trajectories affected by noise (for
instance, with a continuous noise) mainly spread out along this
manifold, or in our case, along the Pn values. For this reason, to add
a disturbance only to the map Pn+1 = f(Pn) is a very good
approximation. In our numerical simulations, we have chosen a
uniform noise distribution bounded by j0. Each time that the
trajectory crosses the set of the local minima, we insert a
disturbance jjnj � j0.

In the next step, we have to define the initial region Q in phase
space where we want to maintain the dynamics of the system. In
our case, we want to sustain the dynamics close to the chaotic
attractor, avoiding the escape produced when Pn < P* = 0.589,
therefore we choose the initial Q to be the interval Pn 2 [0.589,
Fig. 3. Return map obtained by using the successive local minima of the time series

P(t) as shown in Fig. 2(c). Notice that below P* = 0.589 the trajectory asymptotes to

zero. This is the map Pn+1 = f(Pn) that we use to apply the partial control method.
0.84] indicated in Fig. 4. It is important to note that, a suitable
initial region Q, must contain the chaotic saddle, which is the
responsible for the existence of the chaotic transient.

Once we have defined what do we want to control, we use the
Sculpting Algorithm (Sabuco et al., 2012b) in order to find the safe
set. The computation of the safe set depends on the chosen values
of j0 and u0 and our observations indicate that for a given j0, we
may obtain different safe sets which correspond to different values
of u0. As a matter of fact, the smaller the u0, the smaller the final
safe set. Nevertheless, there is a critical value of u0 below which no
safe set exists. In this case, we have chosen for our simulations
j0 = 0.0114 and u0 = 0.0076, where u0 is very close to the minimum
value for which the safe set exists. In Fig. 4 we represent the steps
of the algorithm to build the safe set.

In Fig. 5 we represent the obtained final safe set composed by
the different subsets shown there. We use this safe set to choose
the points in phase space that can be controlled as we have
described. When the trajectory crosses the set of the minima, we
evaluate the value of f(Pn) + jn, if the point is inside a safe set we do
not apply the control, and if it is outside, we relocate it inside the
nearest safe point, resulting the new safe point Pn+1 = f(Pn) + jn + un.
The criterion to control the point to the nearest safe set is only an
option, since in most cases there are other possible points
belonging to the safe set which we can reach without exceeding
the upper bound of control. From an ecological point of view this
flexibility allows us to choose the better option considering our
specific needs. For example, depending on our ease to stocking or
Fig. 4. Steps of the Sculpting Algorithm that converges to the final safe set. The

upper bound disturbance and control used by the algorithm are j0 = 0.0114 and

u0 = 0.0076 respectively. The horizontal black bars helps us to visualize the process

and represent the points Pn that satisfy the condition to be a safe point at each step.



Fig. 5. Final safe set composed of different subsets obtained with the Sculpting

Algorithm using j0 = 0.0114 and u0 = 0.0076. We also indicate the group of subsets

where the dynamics remains trapped, that is, the asymptotic safe set (Sabuco et al.,

2012a).

Fig. 8. Zoom of the correction in the local minimum of P(t) indicated in Fig. 8. We

can see the noise introduced and the corresponding control applied.
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harvesting individuals we can make the choice which involves the
smallest effort.

When carrying out the numerical simulations, we have noticed
that the dynamics after some iterations do not visit certain regions
of the safe set. This subset of the safe set where the trajectories
asymptote after the control is applied is called the asymptotic safe

set (see Fig. 5). For a detailed analysis about the features and direct
computation of the asymptotic safe set (see Sabuco et al., 2012a).
Controlled trajectories in phase space are shown in Fig. 6, where
we also indicate the safe set used with the projections on the set of
the minima for a clear visualization. In Fig. 7, we represent the
Fig. 6. Controlled trajectory with j0 = 0.0114, represented in the phase plane (P, C).

We also show the asymptotic safe set calculated with j0 = 0.0114 and u0 = 0.0076,

and its projection in the set of the minima (dashed line) where the control is

applied.

Fig. 7. Red line: time series of the predators population without control exhibiting a

escape towards zero, what implies the extinction of the predators. Blue line:

controlled time series of the predators population where the extinction is avoided.

This time series corresponds to 50 iterations in the return map Pn+1 = f(Pn). A zoom

of one of the minima of the time series of P(t) is shown in Fig. 9 in order to see how

the noise and the control are applied. (For interpretation of the references to color in

this legend, the reader is referred to the web version of the article.)
corresponding controlled time series of the predators population
(blue line) in contrast to the uncontrolled trajectory (red line),
involving the extinction. To visualize how the disturbances and the
respective controls are added in a minimum at each iteration, we
show in Fig. 8 a zoom of one of the minima of the time series of P(t).

In order to see a further analysis, in Fig. 9 we represent the
strength of the noise and the strength of the control applied for
30,000 iterations corresponding to the time interval [0, 1.2 � 106]
in the time series of P(t). While the strength of the noise is
distributed uniformly between the values 0 and jj0j = 0.0114, all
values of the control are located under the maximum ju0j = 0.0076,
showing that the partial control method works as we expected. We
also compare the mean of the noise and the control, obtaining an
average control 0.0018 which is less than half the average noise
0.0057. As we will show later, the small average control that we
need to use, is another remarkable feature of this control method.

In order to see the adaptability and robustness of the partial
control, we compute the safe sets for different values of the upper
bound noise j0 in the range [0.001, 0.057]. We show the controlled
trajectories in phase space in Fig. 10 with the respective safe sets
used.

As our results show, the partial control works rather well for
different values of j0. The trajectories are sustained in the chaotic
region with junj � u0 for all the iterations, moreover, as indicated in
Fig. 9. Strengths of noise and control applied for 30,000 iterations, represented as

points instead of bars for a clear visualization. On the left, the strength of the noise

that affects the map. On the right, the respective strength of controls applied for the

partial control method. We also indicate the upper bound of the noise j0 = 0.0114

and upper bound of the control u0 = 0.0076 used to compute the safe set.



Fig. 10. Controlled trajectories in the phase plane (P, C) and the respective

asymptotic safe sets for different noise intensities in the range j0 = [0.002, 0.50].

Fig. 11. The black sets represent the two target regions used to control the

trajectories. The red sets represent the escape regions. We colored the regions with

different thicknesses to help us in the visualization. (For interpretation of the

references to color in this legend, the reader is referred to the web version of the

article.)
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each case, the average control used is less than twice the noise
average. In addition, this method is able to control the system
without great modifications of the original dynamics, keeping the
chaotic behavior, as a permanent state.

5. The partial control method implies smaller controls

In the paper by Duarte et al. (2009), the authors apply a control
method described in Dhamala and Lai (1999), in order to sustain
the chaotic behavior after the crisis for the McCann–Yodzis
ecological model with cooperative hunting. They do not consider at
all any external disturbance, that is, the system they consider is
only deterministic.

The main idea here is to consider the problem analyzed by
Duarte et al. (2009), including an external disturbance. As a matter
of fact, we consider the same external disturbance that we have
used when we have applied the partial control method in the
previous section. And then, we proceed to compare the two control
methods.

The method they use is based on the observation that a point
P < P* in the return map, goes quickly to zero. In this sense, it is
possible to identify one escaping zone and two target regions, by
computing certain preimages of the fixed point P* as shown in
Fig. 11. The idea is that all points inside the escape region, fall
above P* in the next iteration, while the points of the target region,
survive a long time before escaping.

The control is defined as follows: we have two target regions
(black sets) defined by the intervals [a1, b1] and [b1, c1]. Now we
define the escaping regions (red sets), composed by the points
P < P* and the points between the target regions, see Fig. 11. When
a given iteration falls into the escaping region, we apply a control to
relocate P inside the nearest target point.

It is necessary to point out that the original escaping region in
the deterministic system is just the central gap between the two
target regions. However, in the system affected by disturbances,
the trajectory can escape directly without passing through this
central gap and therefore we also need to control these points.

In Figs. 12, 13 and 14, we represent the control applied in both
methods for different values of the strength of the disturbance in
the range j0 = [10�3, 10�1]. The left plot shows the strength of the
noise introduced in the map during 30,000 iterations, and the
central and right plot represents the control used in Duarte et al.
(2009) and in the partial control method, respectively. We also
indicate the average controls applied in both methods.

The first difference between both control methods is the
distribution of the controls. While the partial control always use
tiny controls, the other method needs sometimes very large
controls. In addition, the partial control method uses always an
average control much smaller than the average noise, whereas the
other method uses a large control in comparison, especially in the
case of small disturbances. We can explain these results, taking
into account that the control set used in Duarte et al. (2009), is
calculated regardless the noise, that is, the control set is the same
for any noise, while the safe sets in the partial control, are obtained
by taking into account the amount of noise present in the system.
As we have seen in the previous section, for small and medium
noises, the scale of safe sets is composed by many small pieces,
allowing us to control the system with tiny corrections, while the
control method used in Duarte et al. (2009) is forced to wait until
the trajectory enters into the escape region to apply the control.

In view of the results shown in Fig. 15, we can say that the
control strategy used in Duarte et al. (2009) implies larger controls
than in the partial control. The reason is that the partial control
method is able to anticipate the escape of a trajectory earlier than



Fig. 12. Control applied by both methods under the same noise condition. On the left, the black points represent the strength of the noise corresponding to a uniform

distribution of j0 = 10�3. The red points in the center correspond to the strengths of the control method used in Duarte et al. (2009). On the right, the blue points represent the

strengths of the control used with the partial control method. We also include the values j0 (black line) and u0 (green line) used to calculate the respective safe sets. (For

interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

Fig. 13. Same figure as the previous one computed with j0 = 10�2.

Fig. 14. Same figure as the previous one computed with j0 = 10�1.
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the other control method, waiting for the last iteration to apply the
correction. The natural question is: what is better, the application
of small and frequent controls like the ones used in the partial
control method, or the large and less frequent controls used in
Fig. 15. Comparative of the average controls in a log–log scale. Dashed black line:

average strength of the noise in the range j0 = [10�3, 10�1]. (a) Red line: average

strength of the control method used in Duarte et al. (2009). (b) Blue line: average

strength of the partial control. (For interpretation of the references to color in this

legend, the reader is referred to the web version of the article.)
Duarte et al. (2009)?. If the amount of control is the major concern,
the Fig. 15 shows how the partial control uses a smaller average
control. However if a higher number of interventions involves a
higher cost, we can use the safe set computed for f2(Pn) or f3(Pn) to
reduce the frequency of interventions to a half or a third, at the
expense of having larger controls (Zambrano et al., 2014). This
flexibility allows the ecologist to choose the best way to achieve his
goals, depending on his specific needs. Finally, in the case of large
disturbances, the dispersion modifies the chaotic saddle so much,
that only a gross control is able to avoid the escape. This is the
reason why both methods achieve similar results for larger values
of noise.

6. Conclusions

To avoid the species extinction which time evolution depends
on the population dynamics of other species, might be a big
challenge from an ecological point of view. Nonlinear interactions
among species often result in a complex global dynamics, making
that the application of external actions over the system, do not
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have easy predictable consequences. Moreover, if we introduce an
external disturbance in order to reproduce a real system, the task
to design a suitable control strategy can be a very difficult issue,
which requires a deep knowledge of the complex dynamics.

In this work, we analyze the problem of the species extinction
using an extended McCann–Yodzis ecological model affected by
external disturbances. This system, which is composed of three
species, presents a boundary crisis involving the extinction of one
of them. With the aim of avoiding the extinction, we have applied
the partial control method, which is a novel successful control
method where a control smaller than noise is needed. We show
that the method is able to control the dynamics of the three-
dimensional flow, applying control just on the predators popula-
tion. Different strengths of noise have been added, showing in all
cases, that the partial control method, was able to sustain the
transient chaotic dynamics, avoiding the extinction.

In addition, we show the main features of this method. First, the
control is applied in discrete times and the partial control method
ensures an upper bound control value, that is, all controls used are
placed below this value. In addition, the amount of control applied,
is smaller than the given amount of noise. Furthermore, the
amount of control is smaller than the control used by other control
methods in the literature. The method does not need to have big
modifications of the original dynamics, keeping the chaotic
behavior. For all these reasons the partial control method reveals
a great potential to be applied in real situations affected by noise,
where a boundary crisis leads the dynamics to a undesirable state
of the system, providing an automatic and minimally invasive
strategy to avoid it.
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parvata lugens (Stål) (Homoptera: Delphacidae). Res. Popul. Ecol. 26, 134–149.

Packer, C., Ruttan, L., 1988. The evolution of cooperative hunting. Am. Nat. 132, 159–
198.

Rypstra, A.L., 1985. Aggregations of Nephila clavipes (L.) (Araneae, Araneidae) in
relation to prey availability. J. Arachnol. 13, 71–78.

Sabuco, J., Zambrano, S., Sanjuán, M.A.F., 2010. Partial control of chaotic systems
using escape times. New J. Phys. 12, 113038.

Sabuco, J., Sanjuán, M.A.F., Yorke, J.A., 2012a. Dynamics of partial control. Chaos 22,
047507.

Sabuco, J., Zambrano, S., Sanjuán, M.A.F., Yorke, J.A., 2012b. Finding safety in
partially controllable chaotic systems. Commun. Nonlinear Sci. Numer. Simulat.
17, 4274–4280.

Schreiber, S.J., 2001. Chaos and sudden extinction in simple ecological models. J.
Math. Biol. 42, 239–260.

Sinha, S., Parthasarathy, S., 1996. Unusual dynamics of extinction in a simple
ecological model. Proc. Natl. Acad. Sci. U. S. A. 93, 1504–1508.

Stander, P.E., 1991. Cooperative hunting in lions: the role of the individual. Behav.
Ecol. Sociobiol. 29, 445–454.

Vandermeer, J., Yodzis, P., 1999. Basin boundary collision as a model of discontinu-
ous change in ecosystems. Ecology 80, 1817–1827.

Ward, P.I., Enders, M.M., 1985. Conflict and cooperation in the group feeding of the
social spider Stegodyphus mimosarum. Behaviour 94, 167–182.

Weis, J.B., Knobloch, E., 1990. A stochastic return map for stochastic differential
equations. J. Stat. Phys. 58, 863–883.

Zambrano, S., Sanjuán, M.A.F., Yorke, J.A., 2008. Partial control of chaotic systems.
Phys. Rev. E 77, 055201(R).

Zambrano, S., Sanjuán, M.A.F., 2009. Exploring partial control of chaotic systems.
Phys. Rev. E 79, 026217.

Zambrano, S., Sabuco, J., Sanjuán, M.A.F., 2014. How to minimize the control
frequency to sustain transient chaos using partial control. Commun. Nonlinear
Sci. Numer. Simulat. 19, 726–737.

http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0025
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0025
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0055
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0055
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0060
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0060
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0065
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0065
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0075
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0075
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0080
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0080
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0085
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0085
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0090
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0090
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0095
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0095
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0105
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0105
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0115
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0115
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0125
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0125
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0125
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0130
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0130
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0135
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0135
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0140
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0140
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0145
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0145
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0150
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0150
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0155
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0155
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0160
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0160
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0165
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0165
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0170
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0170
http://refhub.elsevier.com/S1476-945X(14)00024-5/sbref0170

	When less is more: Partial control to avoid extinction of predators in an ecological model
	Introduction
	Description of the ecological model
	Application of the partial control method
	Finding the safe sets and controlled trajectories
	The partial control method implies smaller controls
	Conclusions
	Acknowledgments
	References


