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Tulipán s/n, 28933 Móstoles, Madrid, Spain

SAMUEL ZAMBRANO
San Raffaele University, Via Olgettina 58, 20132 Milan, Italy

MIGUEL A. F. SANJUÁN
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Chaotic scattering in open Hamiltonian systems is relevant for different problems in physics.
Particles in such kind of systems can exhibit both bounded or unbounded motions for which
escapes from the scattering region can take place. This paper analyzes how to control the escape
of the particles from the scattering region in the presence of noise. For that purpose, we apply
the partial control technique to the Hénon–Heiles system, which implies that we need to use
a control smaller than the noise present in the system. The main finding of our work is the
successful control of the particles in the scattering region with a control smaller than noise. We
have also analyzed and compared the escapes time of orbits in the scattering region for different
situations. Finally, we believe that our results might contribute to a better understanding of both
chaotic scattering phenomena and the application of the partial control technique to continuous
dynamical systems.

Keywords : Controlling chaos; chaotic scattering; escaping dynamics.

1. Introduction

Open Hamiltonian dynamical systems have received
much attention in the past few years in the con-
text of transient chaos and chaotic scattering.
The main reason resides in the fact that they
are being used to model a wide range of phe-
nomena in very different fields of physics. Some

applications are the analysis of the escape of stars
from galaxies [Contopoulos et al., 1993; Contopou-
los, 1990], the dynamics of ions in electromag-
netic traps [Horvath et al., 1998], the interaction
between the Earthś magnetotail and the solar wind
[Chen et al., 1990], and the study of geodesics
in gravitational waves [Veselý & Podolský, 2000],
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among others. All these applications are different
manifestations of chaotic scattering, which basi-
cally consists of the interaction of a particle with
a system that scatters it, in a way that the final
conditions of speed and direction depend on the ini-
tial conditions in an extremely sensitive way (see
[Bleher et al., 1990] for a detailed study of this
phenomenon). Typically for energies above a cer-
tain threshold value, which is commonly called the
escape energy, the orbits are unbounded and sev-
eral exits may appear in such a way that particles
inside the scattering region leave it after a certain
amount of time. However, if the energy is below
this threshold value, there are no exits and conse-
quently escapes are not possible. Chaotic scattering
is normally associated with the dynamics of open
Hamiltonian systems with chaotic properties. The
possibility of an orbit to escape from the attraction
of the corresponding potential is one of the main
characteristics of this kind of systems. Usually, a
particle bounces for a certain time in a bounded
area called the scattering region, and eventually
leaves it through one of the several exits, and it
never comes back.

In this paper, we consider the conservative
Hénon–Heiles Hamiltonian for energy values above
the escape energy, so that the corresponding poten-
tial has exits; and trajectories starting at the inte-
rior of the potential are unbounded. Furthermore,
we consider the situation in which there is noise, in
such a way that it influences the escape of the tra-
jectories from the scattering region. Since the pio-
neering work on controlling chaos, the OGY method
[Ott et al., 1990], different control schemes have
been proposed that typically allows one to obtain a
desired response from a dynamical system by apply-
ing some small but accurately chosen perturbations.
In this context, some techniques that allow avoiding
escapes in open dynamical systems presenting tran-
sient chaos have been proposed, with applications
to many different fields in Physics and Engineer-
ing, see e.g. [Pyragas, 1992; Aguirre et al., 2004].
The main goal of the paper is to use a control tech-
nique aiming at keeping trajectories inside the scat-
tering region with a control intensity smaller than
the environmental noise present in the system.

Keeping in mind that in most realistic situa-
tions, the trajectories of the particles can be affected
by environmental noise [Mills, 2006], it will be
an obstacle if escapes need to be avoided. In the
presence of noise, we can imagine three different

scenarios for control. If the control applied on the
system’s trajectories is larger than the amplitude
of the noise, we should find quite easily a control
strategy to keep the trajectories inside the scatter-
ing region. If the control applied is equal to the
intensity of the noise, there are strategies that allow
one to keep the trajectories inside the scattering
region. But there is a third possibility: a control
smaller than the amplitude of the noise. This is
achieved by making use of the partial control tech-
nique recently described in [Zambrano et al., 2008;
Zambrano & Sanjuán, 2009]. This type of control
does not tell where the trajectories will go exactly,
it only drives the particle towards the closer point
of a particular set. By doing so, escapes are avoided
with a control smaller than the noise [Zambrano &
Sanjuán, 2010]. Thus far, the partial control tech-
nique has been applied to discrete one-dimensional
[Aguirre et al., 2004], and two-dimensional systems,
but never in a problem of chaotic scattering. In this
paper, we show how to implement this control tech-
nique in a chaotic scattering problem described by
the Hénon–Heiles system in presence of noise.

The organization of the paper is as follows. In
Sec. 2, we sketch the main features of the partial con-
trol technique. Section 3.1 describes our model and
the nature of the orbits. The analysis of the noise
and its effect on the dynamics of the system is car-
ried out in Sec. 3.2. Section 3.3 analyzes how the par-
tial control technique can be applied to our system.
Finally, some concluding remarks appear in Sec. 4.

2. The Partial Control Technique

We sketch here the basic ingredients of the par-
tial control technique. We consider that the unper-
turbed dynamics of the system that we want to
control is given by the one-to-one map pn+1 =
f(pn). Moreover, we assume that there is a region
in phase space Q from which nearly all trajectories
escape under iterations of the map. The dynamics
inside that region can be complex due to the pres-
ence of a zero-measure nonattractive chaotic set (i.e.
a chaotic saddle). The aim of partial control is to
avoid escapes from Q in the presence of noise with
a control smaller than noise.

As in most physical applications, trajectories
might be deviated due to the action of the environ-
mental noise. This can be modeled in our equations
as pn+1 = f(pn) + un, where un is the noise and we
assume it is bounded, ‖un‖ ≤ u0.

1350008-2

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

3.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
A

N
 D

IE
G

O
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

2/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 7, 2013 16:8 WSPC/S0218-1274 1350008

Partial Control of Escapes in Chaotic Scattering

In order to keep trajectories bounded, we apply
an accurate control rn at each iteration, where we
also assume it is bounded, ‖rn‖ ≤ r0, by a positive
constant r0.

The global dynamics of our system is given by
the equations

qn+1 = f(pn) + un, pn+1 = qn+1 + rn, (1)

where the control rn depends on pn and un.
Even if the trajectories typically escape from

Q and the system is affected by noise of upper
bound u0, the partial control technique allows one
to keep the trajectories bounded even if the upper
bound control r0 is smaller than the upper bound
noise u0, that is ‖r0‖ ≤ u0. This is possible due to
the existence of certain sets, which are called safe
sets [Zambrano et al., 2008; Zambrano & Sanjuán,
2009], inside the region Q. Initially, these safe sets
were thought to be zero-measure sets inside Q, hav-
ing the property that a particle may stay on them
once the control is applied after having been pushed
by a certain amount of noise. These safe sets were
found to be curves for horseshoe maps [Zambrano
et al., 2008]. Later, it was shown that these safe
sets could be “thicker” and related with the escape
time sets, i.e. the set of points inside Q that escape
from it under certain number of iterations [Sabuco
et al., 2010]. Recently an algorithm called Iterative
Sculpting Algorithm [Sabuco et al., 2011] has been
designed by which the safe sets can be detected
automatically by discarding points from a certain
initial set within Q, without even needing to know
exactly the system’s equations.

3. Application of the Control
Strategy to the Hénon–Heiles
System

3.1. The Hénon–Heiles system map

The Hénon–Heiles Hamiltonian is a well-known
model for an axisymmetrical galaxy [Hénon &
Heiles, 1964], and it has been used as a paradigm
in Hamiltonian nonlinear dynamics. It is a two-
dimensional time-independent dynamical system
and for values of the energy above the escape
energy, its potential shows three different exits [see
Fig. 1(a)]. The Hamiltonian equation is

H =
1
2
(ẋ2 + ẏ2) +

1
2
(x2 + y2) + x2y − 1

3
y3, (2)

(a)

(b)

Fig. 1. (a) The isopotential curves of the Hénon–Heiles
system for different values of the energy, in which both
bounded and unbounded motions can take place. (b) Plots
of the isopotential curves for E = 0.21.

and for Ee = 1/6, it shows an equipotential line that
is an equilateral triangle. For energy values above
the escape energy, the trajectories are unbounded
and the system presents three exits, with a 2π/3
rotation symmetry. At each exit there exists an
unstable orbit, known as Lyapunov orbit, acting
as frontiers. Any trajectory that crosses any one
of them with an outward-oriented velocity goes to
infinity and never comes back. We are interested in
a situation with escapes from the scattering region,
so from now on we fix the value of the energy to be
E = 0.21, for which the system shows three exits as
shown in Fig. 1(b).

The Hénon–Heiles Hamiltonian has a three-
dimensional phase space, due to the conservation
of the energy. In order to obtain a map associ-
ated with the dynamics of the system, we consider
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Fig. 2. The Poincaré map, there is a one-to-one relation
between the nth intersection with x = 0 Poincaré surface,
and the (n + 1)st, so pn+1 = f(pn). The coordinates of pn

are the y coordinate and the y component of the velocity,
that is, pn = (yn, ẏn).

the dynamics on an adequate Poincaré map. A
convenient Poincaré map for the Hénon–Heiles sys-
tem is obtained with the intersection of the trajec-
tories with the surface of section x = 0. The map,
defined as

pn+1 = f(pn)

pn = (yn, ẏn),
(3)

is a one-to-one relation between pn and pn+1 as
shown in Fig. 2, where y and ẏ are the y coordinate
and the velocity projection on the y axis for the

nth intersection of the trajectory with the surface
section x = 0.

Every initial condition starting inside the scat-
tering region escapes through any of the exits
described above, therefore, in this case we cannot
talk about attractors. However, we can define
exit basins in an analogous way to the basins of
attraction in a dissipative system. A basin of attrac-
tion is the set of initial conditions in phase space
that are attracted to a specific attractor. Analo-
gously, an exit basin is the set of initial conditions
in phase space leading to a certain exit. In order to
see this, we can draw the exit basin [Aguirre et al.,
2001] of the system by assigning a different color to
each initial point p = (y, ẏ) depending on the exit
through which it leaves the scattering region.

The exit basin is shown in Fig. 3(a), where
we can see that all trajectories leave the scatter-
ing region. The time the particle spends to leave
the potential well, the escape time, depends on
the initial condition of the system. In the con-
text of our problem, we can measure two kinds of
escape times. The first one is the continuous time,
that is the real time the particle spends inside the
scattering region. The second one is the discrete
time, that is, the number of intersections of the
Poincaré surface on any trajectory starting from it
before escaping. In order to have a deeper insight on
the system’s dynamics, as well as a necessary pre-
liminary step in order to determine the safe sets

(a) (b)

Fig. 3. (a) The exit basins, so each color denotes the exit through which trajectories with that initial condition escape: exit
1 (blue, (y → +∞)), exit two (red, (y → −∞, x → −∞)) and exit 3, (yellow (y → −∞, x → +∞)). (b) The escape times, the
colored gradient from blue to red indicates the growth of the escape times. Both figures are painted in the Poincaré section
(y, ẏ), without noise.
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Fig. 4. The figure shows the escape time sets computed for
D = 10−5, as in Fig. 3, the colored gradient from blue to red
indicates the growth of the escape times. It is painted in the
Poincaré section (y, ẏ).

[Sabuco et al., 2011], we have computed the dis-
crete escape times for points in the Poincaré surface
in Figs. 3(b) and 4, respectively with and without
noise, in which the color bar denotes the discrete
escape time of every initial condition. We can see
that all points in this figure have finite escape times.
Furthermore, as expected, we can see by looking at
Figs. 3(a) and 3(b) that the higher escape times cor-
respond to points close to the boundary between the
three exit basins.

3.2. The continuous and the
discrete noise

In the context of our chaotic scattering system,
noise is introduced in a natural way as follows
[Seoane & Sanjuán, 2008; Seoane et al., 2009]:

ẍ + x + 2xy = Dξ(t)

ÿ + y + x2 − y2 = Dη(t),
(4)

where ξ(t) and η(t) are unit Gaussian random pro-
cesses and D is the noise intensity. Note that D =
2σ2, where σ is the standard deviation of the noise
acting on our system. The introduction of noise can
change the dynamics of the system in a drastic way
[Seoane et al., 2009]. For example, we can see in
Figs. 5(a) and 5(b) respectively, how the trajectory
of a particle starting from the same initial condition
changes. In fact, we can calculate the exit basins
for the system in the presence of noise, and we can
see how its structure drastically changes, becoming
blurred, as observed in Fig. 6.

(a)

(b)

Fig. 5. (a) A typical trajectory of a particle, without noise
inside the Hénon–Heiles potential we used. The continuous
escape time for this trajectory is 93, while the discrete escape
time is 27, namely the trajectory crosses the Poincaré sec-
tion 27 times. (b) A typical trajectory affected by the noise,
D = 10−4. The continuous escape time for this trajectory is
14, while the discrete escape time is 3, namely the trajectory
crosses the Poincaré section three times. In both pictures, the
particle starts its trajectory inside the scattering region, at
the initial point (x0, y0) = (0, 0.1) with an angle θ = π/2 and
leaves it after some bounces against the potential walls.
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Fig. 6. This figure shows the same set as of Fig. 5(a) with
a noise intensity D = 10−5. The figure is painted in the
Poincaré section (y, ẏ).

In order to investigate the relation between the
noise intensity D and the escape times, we plot
Fig. 7, that shows the average discrete escape time
Td versus the noise intensity D. This picture has
been built by computing the mean of 100 realiza-
tions for every value of D. We can observe, for
very low values of noise, an increase of the dis-
crete time escape Td. This is in agreement with the
results shown in [Altman & Endler, 2010] but for
a continuous-time system instead of a map. The
preservation, for very low amount of noise, of struc-
tures like the KAM islands is responsible for larger
escape times compared to the noiseless case. On the
other hand, when the system is completely noisy
these structures are destroyed and the phase space

Fig. 7. This figure shows the relation between the noise
intensity, D, and the discrete escape time. The diagram shows
a sudden variation after the value D = 10−4, when finally
time starts to decrease for higher values of noise.

appears to be smeared. This results in the particles
escaping very fast from the scattering region and it
explains the decreasing of Td only after the value
D = 10−4, as shown in Fig. 7.

In order to apply the partial control technique,
we need to distinguish between two kinds of noise.

(a)

(b)

Fig. 8. (a) The dispersion on the Poincaré surface of the first
iteration of 50 trajectories, with the same initial conditions,
(x0, y0) = (0, 0.4), θ = π/2, and affected by continuous noise.
(b) 50 trajectories with a big dispersion on the Poincaré map.
In (a) the bunch of trajectories is much more coherent, while
in (b) it is diffused on the axis x = 0. The two bunches of
trajectories are calculated with the noise D = 10−6.
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Fig. 9. This figure shows the relation between the intensity
of the noise D and u0. The diagram shows a sudden variation
after the value D = 10−5.

The first one is that mentioned above, which affects
directly and continuously the trajectory as shown
in Fig. 5(b). We call it continuous noise. We see
trajectories starting with the same initial condition
on the Poincaré section with different noise real-
izations in Figs. 8(a) and 8(b). We observe that
the iteration of a given point pn on the Poincaré
section is not f(pn), due to the presence of noise.
The effect of the continuous noise on the dynam-
ics of the Poincaré map is what we call the discrete
noise. Formally, under the noisy Poincaré map we
have f(pn) + un, where un such that |un| ≤ u0,

Fig. 10. The safe set computed using our algorithm for
D = 10−7. After discarding the points with escape time
equal to zero, and the points with a high sensitivity to noise,
an algorithm is applied to calculate the safe set, where tra-
jectories are kept inside the scattering region with a control
smaller than noise.

(a)

(b)

Fig. 11. (a) An example of a controlled trajectory in the
(x, y) plane. (b) The same trajectory without the control. The
value of the noise intensity that we have used is D = 10−7

and the initial conditions are (x0, y0) = (0, 0.1), and θ = 1.7.
For the controlled trajectory we show only 12 iterations for
clarity.

is our discrete noise. Now we need to characterize
the relation existing between the upper bound of
the discrete noise u0 and D. To estimate this rela-
tion, we compute a sufficiently large ensemble of
orbits starting from different initial points pn on
our Poincaré section. After one iteration, each one
of them will intersect again the Poincaré section at
a new point p′n+1 = f(pn) + un. We consider the
difference between p′n+1 and the expected value in
the absence of noise, f(pn), a measurement of the
discrete noise. The upper bound u0 of the discrete
noise is the maximum value obtained. The process,
though, presents some complications that need to
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Fig. 12. The figure shows the control applied at each iter-
ation and we can observe that this control is always smaller
than the noise u0.

be overcome. In particular, we find that some points
pn do not come back to the Poincaré section when
the noise is present, so we discard them because
they are not useful to later compute the safe sets
[Sabuco et al., 2011]. Moreover, we find that the sen-
sitivity to noise of some initial points pn is very high.
In particular, our numerical simulations show that
the value of the discrete noise for certain points is
abnormally high. This can be seen clearly in Fig. 8.
For a fixed value of noise intensity D = 10−6, we see
that for certain trajectories, as shown in Fig. 8(b),
the discrete noise is much higher, as compared with
the trajectories shown in Fig. 8(a). These points
with high sensitivity to noise are crucial for the
application of the partial control technique and, in
particular, for any control technique involving the
use of an adequate Poincaré map.

For moderate noise values, there are not so
many points with high sensitivity to noise. Thus,
in order to get rid of them, one can compute the
discrete noise for each point in the Poincaré section
and discard a small fraction, for example, points
with the top 2% values. The value of u0 will then
be the maximum value of the discrete noise of the
remaining 98% of the considered points. And these
simulations have been done for different values of
the noise intensity D. The results are shown in
Fig. 9. We can observe that the value of u0 increases
until reaching a plateau for D ≈ 10−4. Note that
when the noise intensity D is higher than 10−5,
there is a strong increase of the upper bound of the
discrete noise u0. This is related to the destruction

(a)

(b)

Fig. 13. (a) The discrete escape time of some controlled
trajectories, with a control r0 < u0, related to the angles, (0−
2π) with a noise D = 10−7. (b) The number of iterations for
the same ensemble of trajectories of (a) but without control.

of KAM islands in phase space [Altman & Endler,
2010]. These effects on the topology of the system
increase the importance of the noise effect on the
Poincaré map, so we think that this plateau is due
to the fact that discarding only 2% of the points
is insufficient to get rid of all the points with high
sensitivity to noise.

3.3. The application of the partial
control technique

After having discarded these points mentioned
before, we use the remaining points to compute
the safe set by applying the algorithm described in
[Sabuco et al., 2011]. We plot these safe sets for a
noise intensity D = 10−7 in Fig. 10. An example of
application of the partial control technique with this
safe set is shown in Fig. 11(a), whereas in Fig. 11(b)
we can see how the trajectory suddenly escapes
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Fig. 14. The figure shows the discrete escape time of every
initial condition as in Fig. 3(b), but with the control r0 < u0

applied. The gradient bar shows the escape time from the
minimum 0, in blue, to a maximum, 100, in dark red. Note
that the escape times are longer as compared to the noisy
and the deterministic cases, Figs. 4 and 3(b) respectively.

from the scattering region in the absence of control.
The control needed to keep the trajectories bounded
is shown in Fig. 12: we can see that the necessary
control applied is smaller than the value of the esti-
mated discrete noise u0. In other words, there is a
control r0 such that trajectories can be kept inside
the scattering region by applying a control smaller
than noise, r0 < u0.

For trajectories starting on the safe set, the
escape time would be infinite, provided that any
trajectory starting on it can be kept bounded for-
ever with a control r0 < u0. However, it is interest-
ing to see how the escape time sets of the remaining
points in the Poincaré section are affected. This is
shown in Fig. 13(a). We observe that controlled tra-
jectories have escape times always larger than those
uncontrolled, as shown in Fig. 13(b).

Furthermore, it is possible to see the effect of
applying this control to all points in the scattering
region. This is shown in Fig. 14, where it is pos-
sible to see how the escape times are larger than
in the noisy chaotic scattering, Fig. 4, and in the
deterministic chaotic scattering, Fig. 3(b). In this
picture, in fact, it is possible to see that the col-
ored gradient scale can reach the escape time value
of 100, while in the other two cases this same gra-
dient scale does not overcome the value of 10. In
short, we have been able to keep trajectories inside
the scattering region by applying a control smaller
than the noise r0 < u0, once a convenient Poincaré
map is chosen, and the discrete noise and the safe
sets are computed.

4. Conclusions

We have shown in this work how to apply the par-
tial control technique to a noisy chaotic scattering
problem. The application of the technique relies on
an appropriate choice of a Poincaré map and on the
estimation of the effect of noise. In doing so, we
have noticed the existence of certain points of high
sensitivity to noise, which are points whose trajecto-
ries are greatly affected by noise. After discarding
these points and those that escape without inter-
secting again the Poincaré section, one can estimate
the value of the discrete noise u0 and use the Itera-
tive Sculpting Algorithm to determine the safe sets.
After this, the partial control technique is success-
fully applied for the first time for a continuous-time
dynamical system in the presence of noise. We have
also analyzed and compared the escape times of
orbits starting in the scattering region for differ-
ent situations, either in the absence of noise or in
the presence of noise or when the control is applied
in the presence of noise. We believe that the ideas
described in this work might contribute to the appli-
cability of the partial control technique to a wider
variety of problems.
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