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A B S T R A C T

We report the phenomenon of vibrational resonance in a single species and a two species models of

groundwater-dependent plant ecosystems with a biharmonic oscillation (with two widely different

frequencies v and V, V � v) of the water table depth. In these two systems, the response amplitude of

the species biomass shows multiple resonances with different mechanisms. The resonance occurs at

both low- and high-frequencies of the biharmonic force. In the single species bistable system, the

resonance occurs at discrete values of the amplitude g of the high-frequency component of the water

table. Furthermore, the best synchronization of biomass and its carrying capacity with the biharmonic

force occurs at the resonance. In the two species excitable and time-delay model, the response amplitude

(Q) profile shows several plateau regions of resonance, where the period of evolution of the species

biomass remains the same and the value of Q is inversely proportional to it. The response amplitude is

highly sensitive to the time-delay parameter t and shows two distinct sequences of resonance intervals

with a decreasing amplitude with t.
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1. Introduction

The study of the response of a system to a small variation of
environmental changes is important since environmental drivers
often fluctuate. The fluctuation can be periodic or nonperiodic
(noise). In certain ecosystems, a small change in one or more
environmental parameters leads to considerable changes on their
structure and function. It has been noted that many systems have
relatively high levels of diversity for an intermediate level of a
disturbance (Roxburgh et al., 2004). The impact of the environ-
mental variations/fluctuations has been analysed on food web
stability (Vasseur and Fox, 2007), species coexistence in Holt–
McPeek systems (Lai and Liu, 2005) and the stability of recovery
(Steneck et al., 2002). Without invoking interaction between
environmental noise and competition, it has been shown that
environmental fluctuations enhance coexistence of species which
either prefer or tolerate different environmental conditions
(D’Odorico et al., 2008).

In the present work, we consider groundwater-dependent plant
ecosystems. It is important to analyse the influence of the variation
of various environmental factors, particularly, the changes in the
water table depth, in order to get a deep understanding of the
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response of various ecosystems. We point out that vegetation–
water table interactions is very common in many ecosystems like
wetlands, salt marshes and riparian forests. As a matter of fact, it is
considered as one of the key mechanisms influencing the dynamics
of vegetation (Naumburg et al., 2005; Elmore et al., 2006; Munoz-
Reinoso and de Castro, 2005). Appropriate theoretical models are
of great use for exploring various possible dynamics that can
emerge from vegetation–water table interactions. In this connec-
tion, Ridolfi et al. (2006, 2007) have proposed two vegetation–
water table models based on realistic ecological assumptions. The
first model describes the vegetation biomass dynamics of only one
species (dominant species). In this model the rate of change of the
species biomass depends on the existing biomass and the carrying
capacity of the system. The resultant model is a first-order
nonlinear ordinary differential equation with a periodic driver. It
accounts for multistable states in the dynamics of wetland forests
and riparian ecosystems (Scheffer et al., 2001). The second model
describes the two phreatophyte species interacting with a water
table. In these two models, one of the factors that can change the
carrying capacity of biomass is the depth of the water table. Change
in the water depth due to seasonal rainfall oscillations and other
sources is represented by a periodic function of time. It is also
found to display coexistence of two species and chaotic dynamics
(Ridolfi et al., 2007).

The influence of the environmental variability, treated as a
disturbance or a kind of noise, in the above two models has been
analysed recently by Borgogno et al. (2012). Specifically, they have
shown the occurrence of stochastic and coherence resonances.
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When a bistable or an excitable system driven by a weak periodic
force is subjected to an additive noise, it can exhibit an enhanced
response at an optimal noise intensity. This phenomenon is termed
as stochastic resonance (Gammaitoni et al., 1998; McDonnell et al.,
2008). Very recently, noise-induced spatio-temporal patterns in
wetland vegetation dynamics have been reported (Scarsoglio et al.,
2012). In a subthreshold excitable system, a noise-induced
resonance can be realized in the absence of external periodic
driving and is known as coherence resonance (Pikovsky and
Kurths, 1997). Interestingly, it has been shown that deterministic
resonances can be observed even in monostable nonlinear systems
driven by a biharmonic force in the absence of external noise and is
called vibrational resonance (Landa and McClintock, 2000). The
analysis of vibrational resonance has received a great deal of
attention in recent years. Particularly, its occurrence has been
investigated in a spatially extended system in the presence of noise
(Zaikin et al., 2002), Duffing oscillator (Blekhman and Landa, 2004),
two-coupled overdamped anharmonic oscillators (Gandhimathi et
al., 2006) and monostable systems (Jeyakumari et al., 2009).
Experimental evidence of vibrational resonance was demonstrated
in analogue simulations of the overdamped Duffing oscillator
(Baltanas et al., 2003), a bistable optical cavity laser (Chizhevsky
and Giacomelli, 2006) and an excitable electronic circuit with
Chua’s diode (Ullner et al., 2003). The influence of time-delayed
feedback on vibrational resonance was studied numerically (Yang
and Liu, 2010) and theoretically (Jeevarathinam et al., 2011).
Further, biharmonic force induced enhanced signal propagation
was found to occur in one-way coupled systems (Yao and Zhan,
2010) and in a coupled network of excitable neuronal systems (Yu
et al., 2011).

In the present work, we consider the two groundwater-
dependent plant ecosystem models of Ridolfi et al. (2006, 2007)
and investigate the emergence of vibrational resonance. It has been
pointed out that the dynamics of vegetation have a time scale
greater than one season and much greater than man-induced
periodic disturbances (Ridolfi et al., 2007). We wish to mention
that high-frequency oscillation of beach water table due to wave
runup and rundown has been observed and analysed (Waddell,
1976; Li et al., 1997). Interestingly, similar high-frequency
oscillation of underground water table (in addition to the low-
frequency periodic oscillation of water table due to seasonal
variation) can occur due to evaporation, inflow and outflow of
water and temperature fluctuation. It can also be artificially
realized through irrigation or pumping from the aquifer. Further-
more, a water table rise and drop can be induced by vegetation
removal and planting, respectively. Thus, planting additionally
short-lived species interacting weakly with species A can also lead
to a high-frequency variation of the water depth. Therefore, it is
realistic to include a biharmonic force in the water table with two
well-separated frequencies. The first model describing the
dynamics of the biomass V of a single species has bistable states.
When the biharmonic force is included in the water depth the
system shows an oscillatory variation of V. As the amplitude of the
high-frequency force is varied, the system exhibits multiple
vibrational resonance with a decreasing response amplitude at
successive resonances for certain range of fixed values of
amplitude of low-frequency force. The second model describes
the dynamics of two species, say A and B, interacting with the
water table, and where the evolution of B depends on A(t � t) and t
is the time-delay parameter. Unlike the single species model, the
two species model is an excitable system (such a system have only
one stable equilibrium state, but external perturbations above a
certain threshold can induce large excursions in phase space,
which takes the form of spikes or pulses). For a fixed time-delay,
both A and B display a certain number of resonances when the
amplitude of the high-frequency force is varied. The resonance
profiles of A and B are similar except that at resonance the amplitude
of A is always much higher than that of B. Here the resonance
intervals are not sharp but wide. The response amplitude is inversely
proportional to the period of the variation of A and B. The delay
parameter t has a strong influence on the response amplitude. The
response amplitude at successive alternative resonances decreases
when the value of the delay parameter increases.

2. Vibrational resonance in a single species model

To start with, first we briefly introduce the model (Ridolfi et al.,
2006, 2007) in order to prepare the readers for the study of
vibrational resonance.

2.1. Description of the model

The dynamics of phreatophyte biomass V of a single species (or
total plant biomass neglecting interspecies interactions) is
expressed as (Ridolfi et al., 2006, 2007)

dV

dt
¼ VðVcc � VÞ; (1)

where the growth rate of V is assumed to be proportional to the
existing biomass and the available resources Vcc � V with Vcc being
the carrying capacity of the ecosystem, that is, the maximum
amount of vegetation sustainable with the available resources.
Based on experimental evidences, an appropriate form of Vcc shows
a quadratic dependence on the water table depth d. Taking into the
effect of periodic oscillations in the rainfall regions leading to
periodic variations of water table depth, Borgogno et al. (2012)
considered the form of Vcc as

Vcc ¼
a½dðtÞ � dinf �½dsup � dðtÞ�; if dinf < d < dsup

0; otherwise:

�
(2)

The form of Vcc given by Eq. (2) corresponds to the case of
phreatophyte vegetation that depends on water uptake from the
groundwater. In Eq. (2) d(t) is the water table depth, a is the
sensitivity of carrying capacity to changes in the water table depth,
dinf is the threshold of vegetation tolerance to shallow water tables
and insufficient aeration of the root zone and dsup is the threshold
of water depth below which tap-roots cannot extract water. The
water table depth is given by

dðtÞ ¼ d0 þ bV þ FðtÞ; (3)

where d0 is the water depth in the absence of vegetation, b is the
sensitivity of the water table to the presence of vegetation and F(t)
describes the oscillatory variation of the water table. The choice
F(t) = f cos vt is considered in Borgogno et al. (2012). In the present
work we choose F(t) as a biharmonic force with two widely
differing frequencies:

FðtÞ ¼ f cos vt þ g cos Vt; V � v: (4)

The explicit time-dependent variation of the water depth can be
natural due to seasonal rainfall oscillations or man-induced
perturbations (pumping from an aquifer).

The potential U(V) defined through dV/dt = � dU/dV in the
absence of F(t) is depicted in Fig. 1a where d0 = 0.5 m, b = 0.5 m,
a = 26 m�1, dinf = 0.6 m and dsup = 0.9 m the values of the
parameters used in Borgogno et al. (2012). U(V) is of a double-
well form. The equilibrium states can be obtained by setting dV/
dt = 0. V�0 ¼ 0, representing the unvegetated state, is an equilibri-
um point. The other equilibrium states correspond to Vcc = V. In the
plot between Vcc versus V the intersection points of the line Vcc = V

with the curve of Vcc are the equilibrium states. Fig. 1b shows Vcc

versus V. The equilibrium states are V�0 ¼ 0, V�u ¼ 0:28526 and
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Fig. 1. (a) The potential U(V) of the system (1) for f = 0, g = 0. The values of the parameters are d0 = 0.5 m, b = 0.5 m, a = 26 m�1, dinf = 0.6 m and dsup = 0.9 m the values used in

Borgogno et al. (2012). (b) Variation of Vcc with V (thick curve). The equilibrium points are the intersections of the bisector (thin straight-line) with the Vcc curve. The locations

of the equilibrium points are marked by solid circles.
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Fig. 2. Response amplitudes (a) Qv and (b) QV of plant biomass V for three fixed

values of the parameter f with v = 1 and V = 10. The values of the other parameters

in the system (1) are as in Fig. 1.
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V�s ¼ 0:56090. V�u is the local maximum of U(V) and is an unstable
state. V�0 and V�s are two local minima of U(V) and are stable states.
When the periodic function F(t) is taken into consideration, then
the effect of F(t) is to periodically modulate the potential U(V).

2.2. Multiple resonance induced by the biharmonic force

In the F(t) given by Eq. (4), we have assumed that V � v. In this
case due to the difference in time scales of the low-frequency
oscillation f cos vt and the high-frequency oscillation g cos Vt, the
solution of the system (1) consists of a slow variation of V(t)
denoted by Vslow(t) and a fast variation Vfast(t, Vt). We denote Qv

and QV as the response amplitudes of V at the frequencies v and V,
respectively. A theoretical approach has been developed to obtain
an analytical expression for Q for certain class of oscillators (Landa
and McClintock, 2000; Blekhman and Landa, 2004). The threshold
existing between the carrying capacity Vcc and d in Eq. (2) makes it
difficult to use the theoretical approach to investigate the
vibrational resonance. Therefore, we compute both Qv and QV

from the numerical solution of the Eq. (1). From V(t) the sine and
cosine components Qv,s and Qv,c are computed from the equations

Qv;s ¼
2

nT

Z nT

0
VðtÞ sin vt dt; (5)

Qv;c ¼
2

nT

Z nT

0
VðtÞ cos vt dt; (6)

where T = 2p/v and n is taken as, say, 200. Then

Qv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

v;s þ Q2
v;c

q
f

: (7)

Similarly, we can compute QV from the numerical solution V(t).
The value of f is significant in observing vibrational resonance in

the system (1). For a fixed value of v and g = 0, small amplitude
oscillations of V occur about the coexisting stable equilibrium
points V�0 and V�s for |f| � 1. Then for fixed values of f with |f| � 1
and V � v, when g is varied both Qv and QV display one or more
resonances depending upon the values of the parameters of the
system. For g > 0.5, both Qv and QV � 0 and there is no further
resonance. Therefore, we present the results for 0 < g < 0.5. Fig. 2
shows the dependence of Qv and QV for three fixed values of f with
v = 1 and V = 10. In all the cases a nonmonotonic variation of both
Qv and QV occurs. In Fig. 2 Qv and QV are �0 for g > 0.5. For f = 0.08
as g increases from a small value, Qv initially decreases then
increases sharply, reaches a maximum at g = gVR1 = 0.069 and then
sharply decreases to a lower value. As g increases further, Qv

becomes maximum at two other values of g, namely
g = gVR2 = 0.126 and g = gVR3 = 0.312. There are three resonances.
We note that a resonance at the low-frequency of the water table
oscillation is induced by an appropriate value of the amplitude g of
the high-frequency oscillation of the water table. For this reason
the above resonance phenomenon, that is the occurrence of a
maximum of Qv, is termed as vibrational resonance. For f = 0.05 also
three resonances occur. For both f = 0.05 and 0.08 the first
resonance is the dominant and the value of Q at the successive
resonances decreases. On the other hand, the width of the
successive bell-shaped resonance curves becomes wider and
wider. When the value of f increases the resonance peaks move
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towards lower values of g. For f values above a critical value, the
first two resonance peaks disappear. Moreover, the value of Q at
g = 0 is substantially enhanced with an increase in the values of f

producing a resonance without tuning.
In the nonlinear oscillators driven additively by a biharmonic

force, QV monotonically increases when g increases and there is no
resonance-like variation of it. We wish to remark that in the system
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The dashed curves represent f cos vt. For comparative purpose the amplitude of f cos v
(1), the biharmonic force is not an additive force but it is in the
expression for Vcc. Therefore, one wish to know the response of the
system (1) and its relative strength at the high-frequency V of the
water table oscillation. For this purpose, we computed and
presented the variation of QV with g. Interestingly, QV also
displays resonance. This is shown in Fig. 2b. The dependence of QV
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resonances with QV and both occur at the same values of g at which
Qv becomes maximum. QV also shows resonance without tuning.
Though the resonances associated with the two frequencies v and
V occur at the same value of the control parameter g, at resonance
Qv is much higher than QV. We note that Qv and QV are
proportional to the Fourier coefficients of the periodic terms with
the frequencies v and V respectively in the Fourier series of V(t).
Since the Fourier coefficients decay with increase in the frequency
and because V � v the response amplitude QV is much less than
Qv for each value of g in Fig. 2. It is noteworthy to mention that at
g = gVR an enhanced vegetation can be realized over two time
intervals, one with the low-frequency v and another with the high-
frequency V. These two frequencies need not be commensurable.

2.3. Dynamics of V and Vcc at and far from resonances

The occurrence of resonance in the system (1) can be
understood by analysing the influence of the control parameter
g on the evolution of the plant biomass V and the carrying capacity
Vcc of the ecosystem. Fig. 3 shows V(t) and the carrying capacity
Vcc(t) of vegetation biomass for several fixed values of g. In the
absence of F(t) there are two stable dynamical states V�0 and V�s . The
values of f and v are chosen in such a way that in the absence of a
high-frequency oscillation of F(t) the variable V(t) oscillates either
about V�0 or V�s depending upon the initial condition and there is no
transition between these two states. When g is varied from 0 then
for very small values two oscillatory states coexist. The equilibrium
states about which oscillation occurs are perturbed by F(t). For the
entire range of values of g considered in Fig. 2 the evolution of V is
periodic. V(t) is said to be periodic with period t0 if V(t + t0) = V(t) for
some finite and nonzero value of t0 after leaving initial transient
evolution of it, say for example leaving V(t) for
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Fig. 4. Variation of Qv as a function of (a) v and g for V = 10, f = 0.08, (b) V and g for v = 1

other parameters are as in Fig. 1.
0 < t < 100 � T(= 2p/v). The period of V(t) is found to be T = 2p/
v, the period of F(t) given by Eq. (4). In Fig. 3a for g = 0.02 far before
the first resonance, for the initial condition chosen near V�s , though
both V(t) and f cos vt are periodic with the same period T the forms
of both of them are different. Over one drive cycle both V(t) and
Vcc(t) (see Fig. 3g) have more than one dominant maximum while
F(t) has only one. There is no synchronization between V (as well as
Vcc) and f cos vt. For g = gVR1 = 0.069 in Fig. 3b and h the centre of
oscillation is shifted. V and Vcc are synchronized with f cos vt

(except that there is a phase difference). This feature of V leads to
the first resonance. The numerical analysis shows an absence of
resonance at g = 0.069 for the vegetation dynamics about the other
low value stable state ðV�0Þ. The value of Q of the corresponding
dynamics is very small.

Next, at g = 0.07 the high-frequency oscillation of the water
table induces a transition of V about V�s to V�0 . When the vegetation
biomass is close to V�0 ¼ 0, it is easy to note from Eqs. (2) and (3)
that, Vcc = 0 for most of the time over a drive cycle of F(t).
Consequently, the dynamics is confined near V�0 . There is no
transition between the two states V�0 and V�s . This is shown in Fig. 3c
and i for g = 0.075. Though both V and Vcc are quite synchronized
with f cos vt, there is no resonance because V is trapped into the
unvegetated state. Because the centre of oscillation of V is shifted
from the vegetated state to the unvegetated state both Qv and QV

make a sudden jump from a higher value to a smaller value at
g = 0.07 (see Fig. 2). When g increases further, the time intervals in
which Vcc = 0 decreases. In Fig. 3j corresponding to g = 0.126 the
total time over which Vcc = 0 is �T/2 and the line joining the
maxima of Vcc (indicated by solid circles connected by a line) varies
sinusoidally and one can clearly notice synchronization between
Vcc and f cos vt. A second resonance occurs at this value of g. In
Fig. 3d V oscillates about the perturbed equilibrium state V�u. For
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 and f = 0.08, (c)–(d) f and g for two sets of fixed values of v and V. The values of the
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g = 0.23 rapid oscillations of V and Vcc (Fig. 3e and k) take place and
Qv � 0. At g = 0.312 a third resonance with Qv much less than that
of the first two resonances occurs. However, we can clearly see the
synchronization between V and f cos vt in (Fig. 3f).

In this section so far we reported the results for v = 1, V = 10
and f = 0.08. We numerically studied the occurrence of resonance
for a wide range of fixed values of v, V and f and thereby varying
the control parameter g. Fig. 4a and b shows the variation of Qv

with g for v 2 [0.5, 1.5] where V = 10 and V 2 [5, 15] where v = 1,
respectively. Three resonances occur for a wide range of values of v
and V. Fig. 4c and d illustrates the influence of the parameter f on
resonance for two sets of values of v and V. In both the cases we
observe one or more resonance for f � 1. The values of g at which
resonance occur and the corresponding value of Q vary with the
parameters of the system.

3. Vibrational resonance in the two species model

In the previous section, we have described the vibrational
resonance associated with the vegetation dynamics of a single
species interacting with the water table. The present section is
devoted to a two phreatophyte species A and B interacting with the
water table.

3.1. Description of the model

In the two species (denoted by A and B) model proposed by
Ridolfi et al. (2006, 2007) the species A is assumed to be dominant
over the species B. That is, in the absence of interactions with the
water table, A tends to its maximum density while B tends to
disappear. The values of A(t) and B(t) are normalized with respect
to their maximum value. Frequently, the logistic law is chosen for
the growth of A and B. The model system is thus

dA

dt
¼ aAAðVcA � AÞ; (8)

dB

dt
¼ aBBðVcB � A � BÞ; (9)

where aA and aB are the coefficients determining the response rate
of A and B respectively and VcA and VcB are the carrying capacities of
the species A and B, respectively. VcA and VcB depend on the depth
d(t) of the water table. Introducing the change of variables l = aB/
aA and t = aAt0 (which makes time a dimensionless quantity),
dropping the prime in t0 and assuming that the dynamics of B

depends on A(t � t) where t is a time-delay, the Eqs. (8) and (9)
become

dA

dt
¼ AðVcA � AÞ; (10)

dB

dt
¼ lBðVcB � Aðt � tÞ � BÞ: (11)

In Eqs. (10) and (11)

Vci ¼ u½d � dmin;i� 	 u½dmax;i � d�; (12)

where i = A, B, u[s] is the Heaviside function, that is, u[s] = 1 for s > 0
and 0 for s < 0, dmin,i and dmax,i are the minimum and maximum
water table depths tolerated respectively by the species i with
dmin,B < dmin,A < dmax,B (species A needs a deeper aquifer than
species B) and

dðtÞ ¼ d0 þ bAA þ bBB þ f cos vt þ g cos Vt; (13)

where d0 is the water table depth in the absence of vegetation
(A = B = 0) and bA and bB are coefficients that weight the control
exerted by the vegetation on the water table depth d.
In the above two species model one of the species is assumed
to be subdominant. Further, the feedback of A on the evolution
of B is taken as a time-delayed term. For a variety of
phreatophytes  these assumptions can be realized. Dominant
species A can be regarded as plants with tap-roots able to
penetrate through relatively deeper than those of the species B.
In the literature of plants, approximate maximum lengths of
tap-roots of phreatophytes are reported. Some of the plants with
deep penetrating tap-roots with length more than 15m are
mequite, camelthorns, grease wood, and purple medic. Plants
such as black grease wood and banksia (173 species) have tap-
roots with length in the range of 5–10 m. Examples of plants
with tap-roots of short length about 1–5 m are saguaro, creosote
bush, ocotillo brittle bush, sagebrush, alder and chamisa. One
can identify appropriate species of types A and B. In this
connection we wish to cite that the experimental analysis
carried out on holm oaks and cork oaks indicated that the higher
water status leading to more effective drought avoidance of
former is due to their deeper root systems compared to the
latter (David et al., 2007). A field experiment was performed on
the two phreatophytic plant species Alhagi sparsifolia (camel-
thorns) and Karelinia caspia occurring around the river Oasis at
the southern fringe of the Taklamakan desert (Vonlanthen et al.,
2010). Both the species occur at sites with distances to the
ground water table up to 12 m while only Alhagi sparsifolia
occurs at distances up to 17 m.

The motivation for introducing the time-delay term A(t � t) in
the system ((10) and (11)) is to take into account the fact that the
changes in the population of a species, generally, will not have
immediate effect on the growth of own population and on the
interacting species. The effect will be realized after a time-lag. The
effect of time-delay has been studied in population models and
vegetation dynamics (Kuang, 1993; Wang et al., 2011). Reports on
the analysis of influence of various factors on the growth of
vegetation dynamics based on AVHRR (Advanced Very High
Resolution Radiometer) images indicate that the time-lag can be
few days to few months (Richard and Poccard, 1998; Li et al., 2002;
Wang et al., 2006; Farajzadeh et al., 2011). A reasonable value of
time-delay can be of the order of 1/aB where aB is the coefficient
determining the response rate of the species B.

3.2. Multiple resonance

For our numerical study we fix d0 = 1 m, dmin,A = 1.5 m,
dmax,A = 2.5 m, dmin,B = 0.5 m, dmax,B = 2 m, bA = 0.51 m,
bB = 0.9 m, aA = aB = 1 d�1, v = 0.5 and V = 5. When f = 0 and
g = 0 the system ((10) and (11)) has two equilibrium states. (A*,
B*) = (1, 0) is stable while (A*, B*) = (0, 1) is unstable. (A*, B*) = (1, 0)
remains as a stable equilibrium point for f < 0.01 when v = 0.5,
g = 0 and t = 1. The system exhibits excitable dynamics for f > 0.01.

We choose the value of f less than 0.01 so that in the absence of
high-frequency oscillation of water table the system is in the stable
equilibrium state. It is important to investigate the response of the
system for a wide range of values of the control parameters f, v, g,
V and t. Because such a study in the five parameters space is time
consuming we restrict to (g, t) parameters space. We studied the
response of the system for a wide range of values of g for several
fixed values of the parameters of the system. For g > 0.4 there are
no resonances and the response amplitudes of both the species A

and B are �0. Therefore, we consider the range of g as [0, 0.4].
Before presenting the results in (g, t) parameter space first we
discuss the presence of resonance for fixed values of f, v, V and t
thereby varying the parameter g.

Fig. 5 presents the numerically computed response amplitudes
QA(v) and QB(v) as a function of g for three fixed values of f with
t = 1. There are few interesting results:
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 The response amplitudes of the species A and B display similar
variation, however, QA > QB, that is, the species B is subdominant.

 An interesting result is that even though species A is dominant,

when A exhibits resonance the species B does not disappear but
also displays a resonance and, moreover, in Fig. 5 we notice that
QB � QA/2 in the resonance region. This is due to the vegetation–
water table interaction.

 Multiple resonance occurs. QA and QB are not maximum at

discrete values of g, but they are almost constant over a range of
values of g.

 QA (and QB) values at successive resonances are not equal. In the

single species model also response amplitude values are not
same at successive resonances. We wish to point out that in
bistable systems driven additively by a biharmonic force the
response amplitude at successive resonances are found to be the
same (Landa and McClintock, 2000; Rajasekar et al., 2010).

 QA (and QB) values at resonances decrease by increasing the value

of f, while the width of the resonance interval increases.

To understand the occurrence of a multiple resonance and
almost plateau regions of resonance profile, we consider the nature
of the evolution of the system. The system ((10) and (11)) is a
system of two-coupled first-order nonlinear differential equations
driven by a periodic force. Such a system is capable of exhibiting
different types of nonlinear dynamics including chaotic dynamics
(a nonperiodic and bounded evolution of a system with high
sensitive dependence on initial conditions). In the system ((10) and
(11)) in the absence of time-delay and high-frequency oscillation
of water table chaotic dynamics is found to occur when the
amplitude of the low-frequency oscillation of the water table is
varied (Ridolfi et al., 2007). However, in the system ((10) and (11))
for the parametric choices considered in the present work any
route to chaotic dynamics is not observed.

In Fig. 5 the variation of QA and QB is shown for g 2 [0, 0.4] only.
For g > 0.4, as mentioned earlier, we found QA and QB � 0 and
hence we restrict ourselves to the interval 0 < g < 0.4. In this
interval of g either stable equilibrium state or periodic variation of
A and B is found depending upon the value of g. To identify the
period of A(t) we collect the values of A(t) at t = nT where n = 1, 2,
. . ., m (=500), T = 2p/v and designate them as An. If A(t) is periodic
with period T then A1 = A2 = 	 	 	 = Am. For a period-2T variation of
A(t) we observe A1 = A3 = 	 	 	 = Am�1 = a1, A2 = A4 = 	 	 	 = Am = a2 and
a1 6¼ a2. Similarly, we can define higher periods of A and identify
the periodicity of A. In Fig. 6 we have plotted the period of A

together with QA for f = 0.005. The period of A is a complicated
function of g.

Interestingly, the period remains the same in the regions of g

where Q is almost a constant. Different plateau regions correspond
to different constant periods of A. For g < 0.007 we observe (A,
B) ! (1, 0) as t increases. The species biomass A attains its
maximum while that of the species B failed to survive. Even though
the water table depth d(t) varies periodically, the evolution of A

and B is not oscillatory but approaches the equilibrium state for
g < 0.007 as shown in Fig. 7a and e for g = 0.005. This is because the
oscillatory variation of d(t) does not strictly appear as an additive
driving force in (10) and (11) but its influence is on VcA and VcB.
Eqs. (10) and (11) can be regarded as a parametrically driven
system. Moreover, VcA and VcB are not sinusoidally varying function
of time. They take the values 0 or 1 depending upon the values of
the various parameters of the system and the value of t.

The most dominant resonance interval is g 2 [0.157, 0.21]. In
this interval of g the period of A is T (see Fig. 6b). Fig. 7c and g shows
the evolution of A and B with time for g = 0.2. We can clearly notice
the best synchronization of A and B with the external drive f cos vt.
The next dominant resonance interval is g 2 [0.059, 0.071]. Fig. 6b
indicates that the period of A in this interval of g is 2T. In Fig. 7b and
f for g = 0.065 we observe pulse-like solution with period-2T.
Period-3T oscillation of A and B occurs in the interval g 2 [0.037,
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0.047] (not shown in Fig. 7) and this region constitutes the third
dominant resonance region.

For g > 0.24 the evolution of A and B exhibits a rapid oscillation
(as shown in Fig. 7d and h for g = 0.242) and both QA and QB decays
to zero implying degrading of the response of the biomasses A and
B with increase in the value of g. Outside the three dominant
resonance regions, we observe few small intervals of g where Q

becomes almost constant but relatively very small due to higher
periodicity of variation of A and B. In Fig. 7 we notice that as g

increases from a small value the evolution of A and B undergoes a
transition from equilibrium state ! pulse-like solution ! rapid
oscillatory solution. Further, when A becomes maximum (mini-
mum) B becomes minimum (maximum). From the above, we point
out the following features:


 Q is very small if the species biomass remains a constant (see
Fig. 7a and e) or periodic with large period or it oscillates rapidly
(see Fig. 7d and h).

 Q is larger, for example the regions 1, 2 and 3 in Fig. 6a, when the

period of the pulse-like evolution of the biomass species is lower.

 Q remains almost constant over an interval of g (regions 1, 2 and

3 of Fig. 6a) if the period of A remains the same.

It is noteworthy to compare the mechanisms of vibrational
resonance in the FitzHugh–Nagumo (FN) equation, a well studied
excitable system, and the system ((10) and (11)). In the FN
equation when the amplitude of the high-frequency force varies, a
resonance takes place when the waiting time (Tw), the time the
system spends around the equilibrium point between two
consecutive firing, is T/2 (Ullner et al., 2003; Hu et al., 2012). In
the noise-induced stochastic resonance also a resonance occurs
when Tw � T/2. In the system ((10) and (11)), Q is inversely
proportional to the period of evolution of biomasses.

3.3. Effect of a time-delay on the resonance

So far, we have focused our analysis for a specific value of the
time-delay t (=1). Now, we present the effect of time-delay on the
resonance.

First, in the parameter space (g, t), we identify the regions
where Q(t, g) > Q(0, g) for both species. We divide the (g, t)
parameter space in the interval g 2 [0, 0.4] and t 2 [0, 12] into
100 � 100 grid points. We collect the grid points for which Q(t,
g) > Q(0, g). The result is Fig. 8. Both Fig. 8a and b corresponding to
the species A and B respectively is almost similar except near g = 0
(far before resonance) and near g = 0.4 (far after the last resonance)
and in these two regions QA and QB are very small. The time-delay t
has a strong influence on the response amplitudes of A and B.

Next, Fig. 9 features the colour-contour plots of the dependence
of QA and QB on g and t. Multiple resonance is found to occur for a
wide range of fixed values of t. Moreover, Fig. 9 clearly
demonstrates the strong influence of t on the variation of Q. For
fixed values of g the response amplitudes QA and QB are not
periodic with t. Fig. 10 depicts the dependence of QA on the time-
delay t for g = 0.1. QA (as well as QB) exhibits a sequence of
resonance intervals. The period of A (as well as B) in the first
resonance interval is 2T. The periods of A in the other consecutive
intervals are 3T, 4T, . . ., respectively. That is, the system exhibits a
resonance sequence with period adding dynamics. The resonance
intervals with period of A being even (odd) integer multiples of T

are marked by open (solid) circles in Fig. 10. The values of QA of
these two sequence of resonance intervals decrease rapidly with t.



(a)

g

τ

0.40.20

12

6

0

(b)

g

τ

0.40.20

12

6

0

Fig. 8. Regions (marked by black colour) where (a) QA(t, g) > QA(t = 0, g) and (b)

QB(t, g) > QB(t = 0, g) for the system ((10) and (11)). The values of the parameters

are as in Fig. 5.

Fig. 9. Colour-coded dependence of QA and QB of the system ((10) and (11)) on the

parameters t and g for f = 0.005. The values of other parameters are as in Fig. 5. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

g 0.1=

τ

Q
A

100500

40

30

20

10

0

2
3

4
5

6

7

8
9

10
11

Fig. 10. QA of the system ((10) and (11)) as a function of time-delay t for g = 0.1. The

values of other parameters are as in Fig. 5. The period of A in units of T(= 2p/v) is

marked for first few resonance intervals. The resonance intervals with period of A

equal to even (odd) integer multiples of T are marked by open (solid) circles.

C. Jeevarathinam et al. / Ecological Complexity 15 (2013) 33–42 41
Further, we observe that QA(t) does not varies periodically with
t, that is QA(t + a) 6¼ QA(t) for some finite nonzero value of a.
However, the resonance intervals marked by solid circles and
open circles occur at a regular interval of delay-time �T. Similar
dependence of Q on t is found to occur for other fixed values of g.
We note that in nonlinear oscillators with time-delayed
feedback and driven additively by a biharmonic force Q is
shown to vary periodically (Yang and Liu, 2010; Jeevarathinam
et al., 2011).

In this section we presented our analysis on the system ((10)
and (11)) for v = 0.5 and V = 10. Results similar to these fixed
values of v and V are observed for a wide range of values of v and
V. The number of resonances, the values of Q at resonances and the
values of g at which resonances occur depend on the values of the
other parameters of the system.

4. Conclusion

Several studies have reported the occurrence of vibrational
resonance induced by a two-frequency periodic force in physical
and biological nonlinear systems. The present work is devoted to
the analysis of the effect of a biharmonic type variation of the water
table depth in two phreatophyte plant ecosystems. We have
considered a single species and a two species model systems. The
former has bistability, while the later is an excitable system. Our
study shows how a very simple deterministic periodic variation of
the water depth is able to give rise to a great increase in the
response of vegetation dynamics of single species and two species
ecosystems.

In both overdamped and underdamped nonlinear oscillators
exhibiting multiple vibrational resonance (Landa and McClintock,
2000; Baltanas et al., 2003; Jeyakumari et al., 2009; Yang and Liu,
2010; Jeevarathinam et al., 2011), at all resonances the long time
motion of the systems is found to be periodic with period T of the
low-frequency force when the ratio V/v is an integer. In the single
species system (1) the period of evolution is T at all the resonances,
however, the value of Q at successive resonances decreases. In the
two species model, the period of the system is different at
resonances. Further, the response amplitude Q is found to be
inversely proportional to the period of the evolution of the species
biomass. Analysis of vibrational resonance in systems described by
different kinds of evolution equations can lead to a deeper
understanding of the phenomenon.

We believe that analysis of nonlinear phenomena such as chaos,
stochastic and vibrational resonances, in the theoretical models of
vegetation–water table interactions may motivate the experi-
mentalists to perform experiments with controlled variations of
the water table depth in a small scale. Such studies not only would
explore the ways of enhancing the biomass response, but also help
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to improve the theoretical models based on experimental
observations.
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