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Departamento de Matemática Aplicada and IUMA,
Universidad de Zaragoza, E-50009 Zaragoza, Spain

MIGUEL A. F. SANJUÁN
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In this work, we study the Hénon–Heiles Hamiltonian, as a paradigm of open Hamiltonian
systems, in the presence of different kinds of perturbations as dissipation, noise and periodic
forcing, which are very typical in different physical situations. We focus our work on both the
effects of these perturbations on the escaping dynamics and on the basins associated to the
phase space and to the physical space. We have also found, in presence of a periodic forcing, an
exponential-like decay law for the survival probability of the particles in the scattering region
where the frequency of the forcing plays a crucial role. In the bounded regions, the use of the
OFLI2 chaos indicator has allowed us to characterize the orbits. We have compared these results
with the previous ones obtained for the dissipative and noisy case. Finally, we expect this work to
be useful for a better understanding of the escapes in open Hamiltonian systems in the presence
of different kinds of perturbations.

Keywords : Nonlinear dynamics and chaos; fractals; numerical simulation of chaotic systems.

1. Introduction

The Hénon–Heiles system [Hénon & Heiles,
1964] represents a paradigmatic model for time-
independent Hamiltonian systems with two degrees
of freedom [Barrio et al., 2008, 2009]. This system
defines the motion of a particle with unit mass in

the two-dimensional potential V (x) = 1
2(x2 +

y2) + x2y − 1
3y3 and its corresponding Hamiltonian

reads

H0 =
1
2
(ẋ2 + ẏ2) +

1
2
(x2 + y2) + x2y − 1

3
y3. (1)
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Two main types of motion exist for differ-
ent values of the energy: bounded and unbounded
motion. There is a threshold value of the energy E
(H0 for the unperturbed case), called escape energy,
Ee = 1/6, for which the particle might escape
from the potential well for values of energy above
it. The system presents a triangular symmetry D3

with three different exits for which the particle may
escape (see Fig. 1 and [Hénon & Heiles, 1964; Bar-
rio et al., 2009; Aguirre et al., 2001; Seoane et al.,
2006]).

The equations of motion read

ẍ + x + 2xy = 0,

ÿ + y + x2 − y2 = 0.
(2)

A basic property of the Hénon–Heiles system is
the existence of a class of highly unstable periodic
orbits for E > Ee, called the Lyapunov orbits [Con-
topoulos, 1990], that live near the border of the scat-
tering region [Fig. 1(b)] which is the region where
the particle interacts with the potential. When a
trajectory crosses one of these periodic orbits from
inside, it scatters off to infinity and never comes
back. The Lyapunov orbits thus provide a mean-
ingful criterion for measuring the delay times of
particles, namely escapes times T , in the scatter-
ing region even when the system is dissipative [Con-
topoulos, 1990]. Related to this, and as a well known
result for the conservative case, is the algebraic
decay law [Karney, 1983] for the survival probabil-
ity of the particles in the scattering region.
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Fig. 1. Level curves of the Hénon–Heiles potential, exits, limit of bounded motion and the three Lyapunov orbits Li on the
(x, y) plane for (a) E < Ee and (b) E > Ee.

On the other hand, the phase space in the
Hénon–Heiles system [Barrio et al., 2008; Aguirre
et al., 2001] has a very rich fractal structure. Our
system also has a strong topological property, the
Wada property. This topological property has been
shown in several dynamical systems [Poon et al.,
1996; Kennedy & Yorke, 1991; Aguirre et al., 2009],
and it is typical in open hamiltonian systems with
three or more exits. To understand what Wada
basins are, we introduce the concepts of both basins
of attraction and exit basin. A basin of attraction is
the set of initial conditions that leads to an attrac-
tor while an exit basin is the set of initial conditions
that lead to a certain exit. After this and from a
mathematical point of view, a basin is Wada if any
boundary point also belongs to the boundary of at
least two other basins [Kennedy & Yorke, 1991].
This phenomenon has been observed in numerical
simulations of the Hénon–Heiles system in the phase
space [Aguirre et al., 2001] and also in the physical
space [Barrio et al., 2008].

The effect of weak perturbations such as noise
and dissipation have been studied previously in
some specific physical contexts [Seoane et al., 2006;
Seoane et al., 2007; Seoane & Sanjuán, 2008, 2010;
Seoane et al., 2009] but the effect of a periodic forc-
ing on this kind of systems has not been the focus
of study in the last years. Since this kind of pertur-
bation may have implications in problems concern-
ing internal oscillations or the effect of companion
galaxies [Kandrup & Novotny, 2004], among oth-
ers, we have studied its effect in this paradigmatic
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To Escape or Not to Escape, That is the Question

Fig. 2. Plot of the exit basins and the basins of attraction of the Hénon–Heiles Hamiltonian in the physical space (x, y) for
the energy values indicated in every figure. The color code is as follows: B corresponds to bounded orbits, and E1, E2 and
E3 correspond to the initial condition that leads to exit numbers 1, 2 and 3, respectively. (a) Corresponds to the unperturbed
Hamiltonian. In (b) the values of the dissipative parameter are α = 0.01 (top) and α = 0.1 (bottom). (c) Is the noisy problem
with noise intensity ε = 0.01. And finally, in (d) forcing amplitude A = 0.1 and frequency values (i) ω = 0.1, (ii) ω = 1 and
ω = 10, respectively. Notice that the exit basins in the periodic driving case, for E = 0.15 and ω = 10, have not been plotted
since for those parameter values the system does not present escapes.
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Fig. 3. Plot of the exit basins and the basins of attraction of the Hénon–Heiles Hamiltonian in the phase space (y, Y ) for
the energy values indicated in every figure. The color code is as follows: B corresponds to bounded orbits, and E1, E2 and
E3 correspond to the initial condition that leads to exit numbers 1, 2 and 3, respectively. Notice that Y = ẏ. (a) Corresponds
to the unperturbed Hamiltonian. In (b) the values of the dissipative parameter are α = 0.01 (top) and α = 0.1 (bottom).
(c) Is the noisy problem with noise intensity ε = 0.01. And finally, in (d) forcing amplitude A = 0.1 and frequency values (i)
ω = 0.1, (ii) ω = 1 and ω = 10, respectively. Notice that, as in Fig. 2, the exit basins in the periodic driving case, for E = 0.15
and ω = 10, have not been plotted since for those parameter values the system does not present escapes.
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To Escape or Not to Escape, That is the Question

model. In this work, we have also added the effect of
both noise and dissipation on the basin structure in
the physical (x, y) and phase (y, ẏ) space for a bet-
ter understanding of the role of these perturbations
in systems with escapes.

In the presence of all these perturbations,
namely noise, dissipation and forcing, the equations
of motion can be written as follows:

ẍ = −∂H0

∂x
− αxẋ + Ax sin(ωxt) +

√
2εξ(t),

ÿ = −∂H0

∂y
− αy ẏ + Ay sin(ωyt) +

√
2εη(t),

(3)

where αx and αy are the dissipative parameters, Ax

and Ay the amplitude of the driving, ωx and ωy the

frequency of the driving, ε the intensity of the noise
and ξ(t) and η(t) random variables. For our numer-
ical simulations and without any loss of generality
in the results obtained we have taken αx = αy = α,
Ax = Ay = A and ωx = ωy = ω. Note that if
αx �= αy the D3 symmetry is not conserved, whereas
the other perturbed cases break immediately the
symmetry also for Ax = Ay = A and ωx = ωy = ω
(but the results will differ faster from the symmetric
case).

Figures 2 and 3 show the exit basins and basins
of attraction in the physical and the phase space
using the boundary limits of the unperturbed case
(the zero velocity curves). Each block — (a), (b),
(c) and (d) — corresponds to the unperturbed
case, with dissipation, with noise or with a periodic
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Fig. 4. Typical exponential decay law for the particles remaining in the scattering region. R denotes the fraction of particles
remaining in the scattering region. Here, we shoot 5 × 103 with energy E = 0.2 from (x0, y0) = (0,−0.5) and θ ∈ (0, 2π).
(a) Algebraic law of the unperturbed system. (b) In presence of dissipation. The dissipative parameter is α = 0.01 or α = 0.1.
(c) Due to the noise effects. The intensity of the noise ε = 0.01 and (d) with a periodic driving. The forcing amplitude is
A = 0.1 and the forcing frequency is ω = 1 (resonant case), ω = 0.1 or (c) ω = 10. The oscillations around the straight line
obtained from the linear regression of the numerical data is due to the value of the chosen frequency ω.
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forcing, respectively. In the first column, that cor-
responds to a value of the energy below the escape
energy of the unperturbed case, we plot the OFLI2
chaos indicator [Barrio, 2006; Barrio et al., 2010] if
the orbits are still bounded, i.e. if the perturbation
does not cause the escape basins to appear. The
color code of the chaos indicator is the following:
red corresponds to chaotic orbits and blue to stable
orbits. Note that when OFLI2 is used, it is indicated
on the picture, all the other cases are the exit basins
and basins of attraction. In Fig. 2 the initial con-
ditions are taken to maintain the symmetry of the
unperturbed case, while in Fig. 3 the initial condi-
tions are (x, y, ẋ, ẏ) = (0, y, ẋ(E, y, ẏ), ẏ) (obtaining
ẋ from the energy E and y, ẏ).

Figure 4 shows the decay law for the particles
remaining in the scattering region. Each plot cor-
responds to the same perturbations as the blocks:
(a), (b), (c) and (d) of previous Figs. 2 and 3. For
simulation convenience, we launch scattering parti-
cles from within the scattering region and examine
their escaping trajectories. Specifically, the particles
are distributed on a vertical line segment centered
at (x, y) = (0, 0), and they start their motions in dif-
ferent directions. That is, the subspace in the phase
space from which scattering particles are initiated
can be denoted by (y, θ), where θ is the angle of
the initial velocity with respect to the x axis. In all
the decay law pictures we shoot 5× 103 orbits with
θ ∈ (0, 2π).

We analyze separately the effects of every per-
turbation indicating our contribution in the present
field in relation with the results obtained previ-
ously by others. For this purpose, this paper is orga-
nized as follows. In Sec. 2 we describe our system
in the absence of perturbations. Section 3 presents
the effects of the dissipation in both the scatter-
ing dynamics and the basin topology. The influence
of noise on the basin structure and on the escaping
dynamics is shown in Sec. 4. On the other hand, the
periodic driving case is discussed in Sec. 5. Finally,
conclusions and a discussion of the main results of
the paper are presented in Sec. 6.

2. Unperturbed Case

First of all, we consider the Hamiltonian case with-
out perturbations. Figure 2(a) shows, for energy val-
ues of E = 0.15, E = 0.20, E = 0.25, E = 0.35 and
E = 0.50 the corresponding basins in the physical
space and in Fig. 3(a) in the phase space. The color

code denotes the set of initial conditions that are
escaping through one of the exits of our system and
the set of bounded orbits.

At the top of Figs. 2 and 3 (plot a) we show
the plates of the unperturbed case in which Wada
basins are clearly observed. For energy above E ≈
0.22 all the KAM regime disappears [Barrio et al.,
2008] and the orbits escape through one of the
exits. For energy E = 0.15, as all the orbits are
bounded, the chaos indicator shows where the reg-
ular orbits are. Notice that, in Figs. 2(a) and 3(a),
the exit basins become smoother and its fractality
decreases when the energy E increases, in the sense
that the fat-fractal exponent increases, approach-
ing the value of 1 — no fractal geometry — insofar
the energy of the system is large enough (see for
more details [Barrio et al., 2008]). This decrease
in the fractality has consequences with the unpre-
dictability in the evolution of the system. Here it
means that, for high values of the energy, the parti-
cles escape very fast from the scattering region and,
consequently, the system predictability increases.

In Fig. 4(a), we show the scaling law that cor-
responds to an algebraic law as expected for the
conservative system [Karney, 1983].

3. Dissipative Case

The effect of dissipation in systems with escapes is
relevant to physical situations such as the advection
of inertial particles in open chaotic flows [Babiano
et al., 2004]. Previous work [Motter & Lai, 2002]
used a dissipative two-dimensional model to show
that small dissipation produces an abrupt transi-
tion in the decay law of the particles in the scatter-
ing region from an algebraic law to an exponential
law. In [Seoane et al., 2007] the authors extend this
result for continuous-time models. This exponential
behavior can be observed in Fig. 4(b). This result
is due to the fact that the dissipation destroys the
KAM islands converting them into attractors [Mot-
ter & Lai, 2002] and as a consequence the algebraic
law into an exponential law.

Other important physical consequences of the
dissipation effect is the persistence of the Wada
basins in phase space when the dissipative param-
eter is small enough [Seoane et al., 2006]. Once the
dissipation is large enough, the Wada basins are
destroyed and the system loses its unpredictabil-
ity as most of the particles fall into the attractor.
In this system, the origin is an equilibrium point
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α=0 0<α<2 2<α

α=0.01 α=0.1 α=2.1

0

0

0

0

0

0

0

0

Fig. 5. Behavior of the equilibrium point at the origin and some illustrative orbits of initial energy E = 0.15.

of center type (see Fig. 5) for the Hamiltonian case
α = 0, becoming a stable focus for 0 < α < 2 and
a stable node for α ≥ 2 (so, for α > 0 is an attrac-
tor). For the dissipation values studied in this paper
the equilibrium at the origin is a stable focus, and
so the orbits fall to the origin following spirals (see
Fig. 5 for examples).

Block (b) of Figs. 2 and 3 shows the physi-
cal space (x, y) for a dissipation of α = 0.01 and
α = 0.1. For the energy value of E = 0.15 the
OFLI2 plot shows that the chaoticity decreases
with growing α because the orbits fall faster to the
attractor (note that in this case almost all orbits are
regular and the color code just remarks the tran-
sient behavior and the time to reach the attrac-
tor). For the other energy values, the basin plots
show that as the dissipation grows the bounded
region increases due to the attractor. As the energy
grows, the escape basins are increased. In the plates
we indicate the energy corresponding to the initial
condition, as it may change due to the dissipation.
We observe that for high values of the energy, for
instance E = 0.5, and insofar we increase its value,
the green region that represents the bounded orbits
disappears because all particles escape. In this case,
the exit basins are almost identical to the unper-
turbed case (as shown in the right column of Figs. 2
and 3) because the effect produced by the dissipa-
tive term is very small in comparison with the effect
produced by the high energy of the system. The exit
basins become identical when E → ∞.

4. Noisy Case

The presence of noise is characteristic in several
physical situations as in the transport and trap-
ping of chemically or biologically active particles
in large-scale flows [Motter et al., 2003] in which
noise is a natural ingredient. The study of the noise
in open Hamiltonian systems have been carried out
recently in [Seoane & Sanjuán, 2008; Seoane et al.,
2009]. In [Seoane & Sanjuán, 2008] the authors
show that the basin structure in phase space is
completely destroyed because the presence of noise
even if its intensity is very small. For this reason,
we cannot speak about the Wada property of the
basins and the phase space appears smeared. The
attractors are destroyed due to the noise effects
and all trajectories diverge from the scattering
region randomly. Figures 2(c) and 3(c) show the
basins in both the phase space and the physical
space. We clearly observed that also the physical
space appears smeared when noise is present. If we
increase the value of the energy, the effects of the
noise disappear and the exit basins are very similar
to the unperturbed case, as we have explained in
the previous section for the dissipative case.

Another direct consequence of this fact is that
in the presence of noise, particles tend to escape
faster from the scattering region as compared with
the noiseless case. The noise can render particle
decay exponential [Seoane et al., 2009]. This is the
result of the role of the noise in the redistribution
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of the particles in the scattering region at differ-
ent time steps. Figure 4(c) shows this exponential
behavior.

5. Periodic Driving Case

The effect of a periodic driving in this kind of sys-
tems has not been much explored. The physical
implications of this perturbation, such as in prob-
lems concerning the effect of companion galaxies,
chaotic hamiltonian pumps, among others [Kan-
drup & Novotny, 2004; Kawai et al., 2007; Hen-
nig et al., 2008; Zhang et al., 2008; Chacón, 1994;
Dittrich et al., 2003], has motivated us to inves-
tigate its effects in the Hénon–Heiles system. For
this purpose, we have fixed the value of the driving
amplitude A = 0.1 (since, from the escaping point
of view, its value plays the role to help/avoid that
the particles eventually escape from the potential)
and we have analyzed its effects for different values
of the frequency ω. We have taken values of the fre-
quency at ω = 1, that correspond with the value of
the resonant frequency in which T = 2π that corre-
sponds to the normal modes period for E = 0, and
values of ω = 0.1 (below the resonant value) and
ω = 10 (above the resonant value).

Figures 2(d) and 3(d) show plots of the basins
in the (x, y) and (y, ẏ) plane for frequency values
ω = 0.1, ω = 1 and ω = 10. We observe the
important role of the frequency in the topology of
the basins. The symmetry of the basins has dis-
appeared. This can be observed if we compare the
case with energy E = 0.15 and ω = 10 with the
OFLI2 plot of the unperturbed case. Note that for
ω = 0.1 and ω = 1 all the orbits are also escap-
ing orbits of energy E = 0.15 but we show both,
the OFLI2 and the exits basins, since OFLI2 also
gives information about the transient and the exit
times. On the other hand, for energy E = 0.15 and
ω = 10, the orbits never escape and therefore exit
basins do not exist. This is the reason for which
the exit basins, for E = 0.15 and ω = 10, have
not been plotted in Figs. 2 and 3. The behavior
of the exit basins at high energies shows that they
tend to equate each other, and the effect of the per-
turbation due to the periodic driving decreases as
expected. Moreover, we see that the resonant case
with the normal modes is, by difference, the most
perturbed case for low energy values and also the
low frequency case. In both situations, we see that
the escaping orbits appear before the escape energy

for the unperturbed case, and so, the periodic forc-
ing gives a mechanism to force the orbits to escape.
On the contrary, a high frequency perturbation just
modifies slightly the system. Another consequence
on the basins due to the effect of high values of the
energy is the decrease of the fractality. This fact is
shown in Figs. 2(d) and 3(d), in which we observe,
as in the previous cases, the same question related
to the unpredictability in the evolution of the
system.

This result explains the behavior of the par-
ticles escaping from the scattering region as indi-
cated as follows. We expect that, in the presence
of a periodic forcing, the decay law becomes expo-
nential where the best performance for the escapes
takes place for ω = 1. This phenomenon is illus-
trated in Fig. 4(d) where each curve corresponds to
values of the frequency ω = 1, ω = 0.1 and ω = 10,
respectively. The particles escape faster from the
scattering region for ω = 1, which is in agreement
with results presented in Figs. 2(d) and 3(d). Notice
that the oscillations observed in the curve ω = 1 of
Fig. 4(d) are due to the effect of the frequency on
the restoring force.

6. Conclusions and Discussion

We have analyzed the effects of different perturba-
tions on both the topology and the escaping dynam-
ics in the paradigmatic Hénon–Heiles system. We
have characterized the basin topology associated to
the physical (x, y) and phase (y, ẏ) spaces finding
Wada basins for the periodic forcing case. When the
orbits were bounded, we have computed the OFLI2
chaos indicator to distinguish between chaotic and
stable orbits. Its behavior was observed to be dif-
ferent than for the unperturbed case. We have also
addressed the effect of a periodic forcing in the
survival probability of the particles in the scatter-
ing region. The best performance for the escapes
are obtained for the case of the resonant frequency
ω = 1 that corresponds to an exponential decay law.
Finally, we expect these results to be relevant in the
field of open dynamical systems that have implica-
tions in problems of chaotic scattering which has
applications in different areas of physics.
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