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Spain

E-mail: rajasekar@cnld.bdu.ac.in

Received 8 June 2010, in final form 6 September 2010

Published 28 October 2010

Online at stacks.iop.org/JPhysA/43/465101

Abstract
We report our investigation into the role of depth and location of minima of

a double-well potential on vibrational resonance in both underdamped and

overdamped Duffing oscillators. The systems are driven by both low- and

high-frequency periodic forces. We obtain theoretical expressions for the

amplitude g of the high-frequency force at which resonances occur. The

depth and location of the minima of the potential wells have a distinct effect

on vibrational resonance in the underdamped and overdamped cases. In the

underdamped system at least one resonance and at most two resonances occur

and the number of resonances can be altered by varying the depth and location

of the minima of the potential wells. We show that in the overdamped system

there is always one and only one resonance, and the value of g at which

resonance occurs is independent of the depth of the wells, but varies linearly

with the locations of the minima of the wells.

PACS numbers: 05.45.-a, 05.90.+m, 46.40.Ff.

1. Introduction

The noise-induced stochastic resonance phenomenon can be of great use for low-frequency

periodic signal detection. In a typical stochastic resonance, the signal-to-noise ratio (SNR)

becomes maximum at an optimum noise strength. It has been shown that enhancement of

response of a nonlinear system at the low-frequency of the input signal can be achieved when

noise is replaced by a high-frequency periodic force and the associated resonance is termed as

vibrational resonance [1, 2]. The analysis of vibrational resonance has received a considerable

interest in recent years because of its importance in a wide variety of contexts in physics,

engineering and biology. The occurrence of this resonance has been analysed theoretically
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Figure 1. Shape of the potential V (x) for ω20 = β = 1 and (a) A = B = α1 and (b) A = 1

α22
,

B = 1

α42
. In the subplots, the values of α1(a) and α2(b) for continuous line, dashed line and painted

circles are 0.5, 1 and 1.5, respectively.

[1–5], numerically [6–8] and experimentally [3, 5–11]. It has also been studied in amonostable

[12], three wells [13] and asymmetric [14, 15] systems. From both theoretical and practical

standpoints, it is of great importance to obtain an analytical estimate of control parameters at

which vibrational resonance occurs. Along this direction, in a quintic oscillator, analytical

expressions for control parameters at which vibrational resonance occurs are obtained using a

theoretical approximation. Moreover, very recently, quasiperiodic vibrational resonance has

been found in an overdamped bistable system with a time-delay feedback [16].

In this paper, we investigate the role of depth of the potentialwells and the distance between

the location of a minimum and local maximum of the symmetric double-well potential in both

underdamped and overdamped Duffing oscillators on vibrational resonance. Interestingly, this

goal can be achieved through a theoretical approach.

The equations of motion of the underdamped and overdamped systems are

ẍ + dẋ +
dV (x)

dx
= f cosωt + g cosÄt, (1)

and

ẋ +
dV (x)

dx
= f cosωt + g cosÄt, (2)

respectively. We assume that Ä ≫ ω. In equations (1) and (2) the potential V (x) is

V (x) = − 1
2
Aω20x

2 + 1
4
Bβx4. (3)

For ω20, β, A and B > 0 the potential V (x) is of a symmetric double-well form. When

A = B = α1 the potential has a local maximum at x
∗
0 = 0 and two minima at x∗

± = ±
√

ω20
β
.

The depths of the left- and right-wells denoted by DL and DR, respectively, are same and

equal to
α1ω

4
0

4β
. By varying the parameter α1 the depths of the two wells can be varied while

keeping the values of x∗
± unaltered. We call the underdamped system with A = B = α1 as

US1. We call equation (1) with A = 1
α22
and B = 1

α42
as US2 in which case x∗

0 = 0, whereas

x∗
± = ±α2

√

ω20
β
and DL = DR = ω40

4β
is independent of α2. Thus, by varying α2, the depth of

the wells of V (x) can be kept constant while the distance between the local maximum and the

minima can be changed. We denote the overdamped version of the above two systems as OS1

and OS2, respectively. Figures 1(a) and (b) illustrate the effect of α1 and α2.

Systems (1) and (2) with α1 = α2 = 1 were considered by Blekhman and Landa [4].

They obtained the theoretical expression for response amplitude and shown the occurrence of

resonances by varying the control parametersω, g andÄ. They called the resonances observed
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by varying the low-frequency ω and the high-frequency Ä as conjugate resonances. In this

work we consider systems (1) and (2) with α1 and α2 arbitrary, obtain an analytical expression

for the values of g at which resonance occurs, and analyse the effect of depth of the wells and

the distance between the location of a minimum and local maximum of the potential V (x) on

resonance.

For Ä ≫ ω, due to the difference in time scales of the low-frequency force f cosωt and

the high-frequency force g cosÄt , it is reasonable to assume that the solutions of systems (1)

and (2) consist of a slow-motion X(t) and a fast motion ψ(t,Ät). For the underdamped and

overdamped systems separately, we find an analytical expression for the response amplitude

Q of the low-frequency (ω) output signal using a theoretical approach. From the expression of

Q we obtain theoretical expressions for the values of g at which resonance occurs and analyse

the effect of depth of the potential wells and the distance between the location of a minimum

and local maximum of the symmetric double-well potential. We show that the number of

resonances can be changed by varying the above two quantities in the underdamped systems.

One or two resonances only can occur. One of the key results on the overdamped system (2)

is that one and only one resonance is possible.

2. Underdamped systems

In this section we consider the underdamped systems US1 and US2. First, we obtain a

theoretical expression for the response amplitude Q.

2.1. Theoretical approach

For Ä ≫ ω we assume that the solution of (1) consists of a slow-motion X(t) with period

2π/ω and a fast motion ψ(t,Ät) with period 2π/Ä (or period 2π in the fast time τ = Ät).

Substituting x = X + ψ in equation (1) we obtain

Ẍ + dẊ −
(

Aω20 − 3Bβψ2
av

)

X + BβX3 + Bβψ3
av = f cosωt, (4)

where ψm
av = 1

2π

∫ 2π

0
ψm dτ . In the equation for ψ , because ψ is a fast motion, we neglect ψ̇ ,

ψ , ψ2 and ψ3 and approximate it as ψ̈ = g cosÄt . From its solution we find ψav = ψ3
av = 0

and ψ2
av = g2

2Ä4 . Then equation (4) takes the form

Ẍ + dẊ − C1X + C2X
3 = f cosωt, (5)

where

C1 = Aω20 −
3Bβg2

2Ä4
, C2 = Bβ. (6)

The effective potential of (5) is

Veff(X) = − 1
2
C1X

2 + 1
4
C2X

4. (7)

Slow oscillations occur about the equilibrium pointsX∗
0 = 0,X∗

± = ±
√

C1/C2 . X
∗
0 is always

an equilibrium point while X∗
± exists only for g < g0 = Ä2

√

2Aω20
3Bβ

. That is, Veff(X) remains

as a double-well form for g < g0 and becomes a single well for g > g0.

Substituting X = Y + X∗, where Y is the deviation of slow motion from X∗, in

equation (5), in the linear approximation for f ≪ 1 we have Y (t) = AL cos(ωt + φ),

where

AL =
f

√

(

ω2r − ω2
)2
+ d2ω2

, φ = tan−1(ω/C1), (8)

3
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where the resonant frequency is given by

ω2r = −Aω20 +
3Bβg2

2Ä4
+ 3BβX∗2. (9)

The response amplitude isQ = AL/f .

2.2. Role of depth of the potential wells on vibrational resonance

The possibility of occurrence of resonance when a control parameter is varied and the values

of the parameter at which resonance occurs can be determined from the theoretical expression

of Q. We note that Q is maximum when S =
(

ω2r − ω2
)2
+ d2ω2 becomes a minimum. When

g is treated as a control parameter, vibrational resonance occurs at g = g
VR
where g

VR
is a root

of the equation

Sg =
dS

dg
= 4

(

ω2r − ω2
)

ωrωrg = 0, (10)

where ωrg = dωr
dg
. For US1 with A = B = α1 we obtain

g(1)
VR

= Ä2

[

2ω20
3β

−
ω2

3α1β

]1/2

, α1 > α1c =
ω2

2ω20
, (11)

g(2)
VR

= Ä2

[

2ω20
3β

+
2ω2

3α1β

]1/2

, α1 − arbitrary. (12)

Equation (12) implies that there is always one resonance for any value of α1 > 0 at g = g(2)
VR
.

Another resonance occurs only for α1 > α1c at g = g(1)
VR
and g(1)

VR
< g(2)

VR
. In terms of the

depthDL (= DR) of the potential wells the condition for double resonance isDL >
ω20ω

2

8β
. The

number of resonances and the value of g
VR
can be controlled by varying the parameter α1, that

is, the depth of the two wells of the potential. Further, as ω increases g(1)
VR
decreases while

g(2)
VR
increases. The separation between the two resonances increases with an increase in ω.

As α1 increases from α1c, g
(1)
VR
increases while g(2)

VR
decreases. The separation between the two

resonances decreases with an increase in α1. That is, ω and α1 have opposite effects. In the

limit α1 → ∞, g(1)
VR
and g(2)

VR
→ Ä2

√

2ω20
3β
.

The above theoretical predictions are verified numerically. From the numerical solution

x(t) the response amplitude Q is computed throughQ =
√

Q2
S +Q2

C/f where

QS =
2

nT

∫ nT

0

x(t) sinωt dt, (13a)

QC =
2

nT

∫ nT

0

x(t) cosωt dt, (13b)

where T = 2π/ω and n is taken as 500. We fix the values of the parameters in US1 and US2

as ω20 = β = 1, d = 0.5, ω = 1, Ä = 10 and f = 0.05.

Figure 2(a) presents theoretical and numerical g
VR
versus α1. Theoretical gVR is in very

good agreement with the numerical g
VR
. To understand the mechanism of single and double

resonances, in figure 2(b) we plot the resonant frequency ωr as a function of g for four values

of α1. For each fixed value of α1 as g increases from 0 the resonant frequency ωr decreases

from the value
√

2α1ω
2
0 and → 0 as g → g0 = Ä2

√

2ω20
3β

= 81.65. The value of g(= g0) at

4
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Figure 2. (a) Plot of gVR as a function of the parameter α1 in US1. Continuous lines are

theoretical gVR while the painted circles are numerically computed gVR . (b) Variation of theoretical

(represented by continuous lines) and numerically computed (represented by symbols) resonant

frequencies with g. Numerical resonant frequency is calculated using the numerical solution of

equation (1). Labels 1–4 correspond to α1 = 0.25, 0.75, 2 and 4, respectively. The horizontal

dashed line represents ωr = ω = 1. (c) Response amplitude Q versus g for three values of α1.

The theoretical and numerical values of Q are represented by curves and symbols respectively.

Theoretically predicted values of gVR , ωr and Q are in good agreement with the respective values

obtained in numerical simulation.

which Veff undergoes bifurcation from a double well to a single well is independent of α1. For

g > g0, Veff becomes a single-well potential and ωr increases with increase in g. Resonance

will take place whenever ωr = ω. In figure 2(b) for α1 = 0.25 < α1c = 0.5 the ωr curve

intersects the ω = 1 dashed line at only one value of g > g0. In figure 2(c) we notice only

one resonance for α1 = 0.25. For α1 > α1c the ωr curve intersects the ω = 1 line at two

values of g: one below g0 and another above g0. This is shown in figures 2(b) and (c) for few

values of α1. Because the resonance observed in our study is due to the high-frequency force

it is referred as vibrational resonance. The vibrational resonance can be observed either by

varying the amplitude g or the frequency Ä of the force g cosÄt .

Now, we compare the slow-motion X(t) described by equation (5) and the actual motion

x(t) of the system (1). In equation (5), the coefficient of the linear term X depends on both

amplitude g and the frequency Ä of the high-frequency force. The number of equilibrium

points and their locations about which slow oscillations occur can be altered by varying g or

5
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Figure 3. Phase portraits of (a) slow motion and (b)–(c) actual motion of the system (1) for several
values of g. In the subplot (b) the values g for the orbits marked by 1, 2 and 3 are 5, 46.5 and

70, respectively. In (c) the values of g for the orbits marked by 1, 2 and 3 are 90, 124.4 and 210

respectively. All the orbits are periodic with period 2π/ω. The value of α1 is 0.75.

Ä. For g < g0 = 81.65, equation (5) has two coexisting orbits one about X∗
+ and another

about X∗
−. As g increases X∗

± move towards X∗
0 = 0 and consequently the slow orbits also

move toward the origin. This is clear from the phase portrait of the orbits shown in figure 3(a)

for α1 = 0.75 and g = 5, 46.5 and 70. (The orbits in the region X < 0 are not shown in

figure 3(a)). Further, we note that the amplitude of X(t) is maximum for g = g
VR

= 46.5.

In figure 3(b) the actual motions corresponding to g = 5, 46.5 and 70 are shown. For

g = g
VR

= 46.5 there is no cross-well motion of systems (1) and (5). For g > g0, the effective

potential Veff becomes a single-well form and the slow motion takes place about X
∗
0 = 0 and

the actual motion x(t) also occurs about x∗
0 = 0. This is illustrated in figures 3(a) and (c) for

g = 90, 124.4 (at which second resonance occurs) and 210. As g increases, the size of the

slow orbit increases, becomes maximum at g = g
VR
and then decreases, whereas the size of

the orbit of the system (1) increases continuously with an increase in g.

2.3. Role of location of minima of the potential on vibrational resonance

For US2 withA = 1/α22 andB = 1/α42 , as α2 increases the location of the twominima of V (x)

move away from the origin in the opposite direction, i.e. the distance between a minimum and

the local maximum x∗
0 = 0 of the potential increases with increase in α2. We find

g(1)
VR

= Ä2α2

[

2ω20
3β

−
α22ω

2

3β

]1/2

, α2 < α2c =

√

2ω20
ω2

, (14)

g(2)
VR

= Ä2α2

[

2ω20
3β

+
α22ω

2

3β

]1/2

, α2−arbitrary. (15)

6
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Figure 4. (a) gVR versus α2 in US2 where α2 characterizes the distance between the maximum

x∗
0 = 0 and the minima x∗

± of the potential. Continuous lines are theoretical gVR while the

painted circles are numerically computed gVR . (b) Theoretical resonant frequency ωr (marked by

continuous lines) and numerically computed ωr (marked by symbols) versus g for three values of

α2. The horizontal dashed line represents ωr = ω = 1. (c) Q versus g for three values of α2. The

theoretical and numerical values of Q are represented by curves and symbols, respectively.

Figure 4(a) depicts both theoretical and numerical g
VR
versus α2. The difference in the

effect of the distance of x∗
± from origin over the depth of the potential wells can be seen by

comparing figure 4(a) with figure 2(a). In US1 two resonances occur above a certain critical

depth (α1c) of the wells. In contrast to this, in US2 two resonances occur only for α2 < α2c or

in terms of x∗
±, x

∗
± < x∗

c = ω20
ω

√

2
β
. For ω20 = β = ω = 1, the values chosen in our numerical

study are, x∗
c =

√
2 and α2c =

√
2 . (If β 6= 1, then x∗

c 6= α2c). From equation (14) we infer

that as α2 increases from a small value (i.e. as x∗
± moves away from origin), g

(1)
VR
increases and

reaches a maximum value
Ä2ω20√
3βω

at α2 =
√

ω20
ω
. Then with further increase in α2, it decreases

and→ 0 as α2 → α2c. We note that g
(2)
VR
of US1 decreases with an increase in α1, while g(2)

VR

of US2 increases with an increase in α2. Figure 4(b) shows the variation of ωr with g for three

values of α2. Theoretical ωr = 0 at g = g0 = Ä2α2

√

2ω20
3β
. The bifurcation point g0 increases

linearly with α2. Sample response curves for three fixed values of α2 are shown in figure 4(c).

In the double-resonance case the separation between the two resonances increases with an

increase in α2. The converse effect is noticed in US1.
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In US1 and US2, the resonances are due to the minimization of the function S which

occurs when the resonant frequency ωr matches with the low-frequency ω of the input signal

f cosωt . Consequently, at resonanceQ = Qmax = 1
dω
and it depends only on d and ω. Since

d = 0.5 and ω = 1 in figures 2(c) and 4(c) at resonance Q = 2. Equation (10) indicates

that resonance can occur when ωrg = 0. However, for the symmetric double-well systems

considered in this work, we find that ωrg 6= 0 for any nonzero value of g. A resonance due to

ωrg = 0 is found in the monostable and multistable quintic oscillator [12, 13].

It is noteworthy to compare the high-frequency-induced vibrational resonance with the

noise-induced stochastic resonance [17, 18]. In a typical noise driven double-well system,

the SNR increases with an increase in the noise intensity, reaches a maximum value and then

decreases with further increases in the noise intensity. Stochastic resonance occurs when

the motion exhibits periodic switching between the two wells. Further, only one stochastic

resonance is observed. It does not occur in monostable systems with additive Gaussian noise.

When the noise term is replaced by a high-frequency force, g cosÄt , the response amplitude

Q becomes maximum at one or more values of g depending on the values of other parameters.

Vibrational resonance can occur without cross-well motion. This is because, as seen from the

theoretical expression of the response amplitude Q, the mechanism of vibrational resonance

matches of the resonant frequency ωr with the low-frequency ω of the input signal f cosωt .

2.4. Validity of theoretical prediction

It has been pointed out [4, 5] that for parametric values near the transition from bistability

to monostability, a nonlinear system becomes highly sensitive to external perturbations such

as a periodic driving force. Moreover, in system (1) as g → g0 (the bifurcation point), the

resonant frequency ωr → 0. As a result of these, a considerable deviation of theoretical

response amplitude Q with the numerical Q is found for small values of ω for values of g near

the bifurcation value g0. For small values of ω theoretical Q is in good agreement with the

numerical Q for values of g far before and far after g0. We study the effect of ω, ω
2
0 and d on

theoretical Q for a wide range values of g in US1. Results similar to US1 are also observed

in US2.

In figure 5(a) both theoretical Q and numerical Q are plotted as a function of ω for four

values of g. Here g0 = 81.65. For g = 60 and 100, the values far from g0, theoretical and

numerical Q are very close. When g = 75 and 90, the values close to g0, the deviation of

theoretical Q from numerical Q is large for ω < 0.4. Figure 5(b) shows g versus Q for ω = 1,

0.4 and 0.2. For ω = 1, the theory predicts double resonance at g = g
VR

= 47.1 and 124.7,

while in the numerical simulation resonance is observed at g = 46.5 and 124.4. These values

of g
VR
are far from g0 = 81.65. For ω = 0.2, the theory gives g

VR
= 80.55 and 83.80 and

are close to g0, while numerically only one resonance at g = 76.85 is noticed. Moreover,

for values of g near g0, the discrepancy between theory and numerical is considerably large.

In order to know whether the discrepancy is mainly because of ω = 0.2 ≪ ω20 = 1, we

plotted g versus Q for ω20 = 1 and 0.2 for ω = 0.2 in figure 5(c). Even for ω20 = ω = 0.2,

the deviation of theoretically predicted Q from numerically computed Q is large for values

of g near g0(= 36.51). The discrepancy between theory and numerical simulation can be

reduced by increasing the value of the damping coefficient d. This is shown in figure 5(d).

For d = 1 and 2, the theoretical response amplitude is very close to the numerically computed

response amplitude, however, the value of Qmax(g = g
VR

) is reduced by increasing the value

of d. In figures 2(c), 4(c) and 5 we notice close agreement between theoretical Q and

numerically computed Q when Qmax is roughly <3. From the above analysis, we point out

that in practical applications of theoretical treatment of vibrational resonance it is appropriate

8
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Figure 5. (a) ω versus theoretical Q (marked by continuous lines) and numerical Q (marked by

dotted lines) for four fixed values of g for US1. Here ω20 = 1, β = 1, d = 0.5, f = 0.05, Ä = 10

and α1 = 0.75. (b)–(d) g versus Q. (b) ω = 0.2, 0.4 and 1; (c) ω20 = 0.2 and 1 with ω = 0.2; (d)

d = 0.5, 1 and 2 with ω = 0.2 and ω20 = 1.

to avoid Qmax ≫ 1 and choose values of the parameters for which Qmax is say < 3. This is

particularly important for small values of ω.

The actual motions of equations (1) and (5) are studied for the parametric choices

considered in figure 5. Figure 6 shows the bifurcation diagrams of equation (5). We restricted

our analysis to the range 0 < g < 400. For ω = 0.4, the period-T solution is found (figure

6(a)) in the above range of g. When ω = 0.2, chaotic motion and other periodic orbits

are found for g ∈ [72.24, 73.6], an interval of g near g0 = 81.65. This is shown in figure

6(b). Orbits other than the period-T orbit (assumed in the theoretical analysis) are found near

g0 = 36.51 for ω20 = ω = 0.2 (figure 6(c)). In figure 6(d), corresponding to the parametric

choices of figure 5(d) with d = 1, the period-T solution assumed in the theoretical treatment

is also observed in the numerical simulation and other periodic and chaotic motions are not

found. Results similar to the above are found in solving equation (1) numerically.

3. Overdamped systems

For overdamped systems, equation (2), the response amplitude Q is obtained as

Q =
1

√

ω2r + ω2
, (16)

where

ω2r = −Aω20 +
3Bβg2

2Ä2
+ 3BβX∗2. (17)

9
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Figure 6. Bifurcation diagrams of equation (5) near g0. The values of X are collected at

t = n × (2π/ω), n = 1, 2, . . . , 200 after leaving sufficient transient motion. The values of

the parameters are f = 0.05, Ä = 10, β = 1, α1 = 0.75 and (a) ω = 0.4, ω20 = 1, d = 0.5,

(b) ω = 0.2, ω20 = 1, d = 0.5, (c) ω = ω20 = 0.2, d = 0.5 and (d) ω = 0.2, ω20 = 1, d = 1. For

ω20 = 1 and 0.2 the values of g0 are 81.65 and 36.51, respectively.

Q is maximum when ωr = 0. For OS1 (A = B = α1) and OS2
(

A = 1/α22, B = 1/α42
)

we

have

OS1 : g
VR

= Ä

√

2ω20
3β

, OS2 : g
VR

= Äα2

√

2ω20
3β

. (18)

There are several interesting results:

• The most significant result is that g
VR
of OS1 is independent of the depth of the wells of

the symmetric double-well potential;

• g
VR
of OS1 is (1/Ä) times the limiting value (in the limit of α1 → ∞ in equations (11)

and (12)) of US1;

• g
VR
of OS2 is α2 times the g

VR
of OS1. Because g

VR
of OS2 with α2 < 1 is lower than g

VR

of OS1, the former is advantageous compared to the latter;

• In OS1 and OS2 there is always one and only one vibrational resonance;
• g

VR
of OS1 and OS2 corresponds to the value of g at which the effective potential Veff(X)

undergoes bifurcation from double well to a single well. In US1 and US2 resonance does

not occur at the bifurcation point g = g0.

In OS1 and OS2 also discrepancy between theoretical and numerical predictions is

observed for small values of ω near g = g0.

4. Conclusions

In summary, using a theoretical approach we analysed the effect of depth of the wells and the

distance of a minimum and the local maximum of the double-well potential of the Duffing

10
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oscillators (1) and (2). These two quantities have distinct effects. The dependence of g
VR
on

these quantities are explicitly determined. The number of resonances and the value of g
VR
can

be controlled by varying the parameters α1 and α2. Qmax is independent of α1 and α2 in the

four systems. g
VR
of OS1 is independent of α1 while in US1 it depends on α1. g

VR
of OS2

varies linearly with α2 whereas in US2 it is a nonlinear function of α2. In the overdamped

systems only one resonance occurs. Double resonance is possible in US1 and US2 for certain

range of values of α1 and α2, respectively. We have discussed the effect of ω, ω20 and d on

theoretical Q near the bifurcation point g0.

Vibrational resonance has been studied in the overdamped bistable system with the

asymmetric potential V (x) = − 1
2
αx2 + 1

4
βx4 − γ x, α, β, γ > 0 [15] and with V (x) =

4(x −x3)+1 [11], where1 is a constant parameter describing the level of asymmetry. Single

resonance is reported when the amplitude of the high-frequency force or 1 is varied. It is

possible to realize experimentally double-well Duffing oscillators where (i) the depth of the

right-well remains same while the depth of the left-well can be altered and (ii) the location

of the right-well local minimum remains same while the local minimum of left-well can be

altered. It is of interest to analyse the effect of difference in the depths and the locations of the

minima of the wells on vibrational resonance.
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