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A new type of orbit in the three-body problem is constructed. It is
analytically shown that along with the well known chaotic and regular
orbits in the three-body problem there also exists a qualitatively dif-
ferent type of orbit which we call “stabilized”. The stabilized orbits are
a result of additional orbiting bodies that are placed close to the trian-
gular Lagrange points. The results are well confirmed by numerical orbit
calculations.

1. Introduction

The three-body problem appears in practically all fields of contemporary
physics from studies on microscopic systems to macroscopic ones: quantum
mechanics [1], ionic oscillations [2], protein-folding [3], planetary systems
formation [4] etc. The problem considers three particles of mass mi with
positions ri which are each moving under an attractive force from all the
other bodies where particle index i = 1, 2, 3. The system is characterized
by a set of differential equations

mir̈i =
3∑

j=1,i�=j

γmimj(rj − ri)
|ri − rj |3 , (1)
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where γ is the gravitational constant that, by appropriately choosing dimen-
sions, could be ignored by setting it equal to unity. These equations define
the phase flow in an 18 dimensional phase space. Exploiting the symmetry
afforded by (1) leads to a 12 dimensional phase space with 10 integrals of
motion. These are the only known integrals. Henri Poincaré suggested that
highly complex behavior could occur in the the three-body problem. It is
reasonable, if we cannot find a general solution, to examine special solu-
tions and particular features (see for example [5]). A natural starting place
is the restricted three-body problem. In the restricted three-body problem,
m3 is taken to be small enough so that it does not influence the motion of
m1 and m2 (called primaries), which are assumed to be in circular orbits
about their center of mass. For the restricted three-body problem it was
analytically verified that the complex behavior is due to the existence of
transverse heteroclinic points. A well-known example of the chaoticity of
the restricted three-body problem is the Sitnikov problem.

2. The Sitnikov Problem

The Sitnikov problem consists of two equal masses M (primaries) moving
in circular or elliptic orbits about their common center of mass and a third
test mass µ moving along the straight line passing through the center of
mass normal to the orbital plane of the primaries (see Fig. 1).

The circular problem was considered first by McMillan in 1913 [6]. He
found the exact solution of the equations of motion when the eccentricity of
the primaries e = 0 and showed that it can be expressed in terms of elliptic
integrals. Detailed discussion on this case has been done by Stumpff [7].
This problem became important when Sitnikov [8] in 1960 investigated the
elliptic case of e > 0 and proved the possibility of the existence of oscillatory
motions which were earlier predicted by Chazy in 1922–32. Alekseev [9] in
1968–69 proved that in the Sitnikov problem all of the possible combina-
tions of final motions in the sense of Chazy are realized. Later in 1973 the
alternative proof of the Alexeev results was done by Moser [10]. Since then
the Sitnikov problem has attracted the attention of many other authors.
Here we mention some of them. An interesting work in a qualitative way was
carried out by Llibre and Simó [11] in 1980 and later by C.Marchal [12] in
1990. Hagel [13] derived an approximate solution of the differential equation
of motion for particle µ by using a Hamiltonian in action angle variables.
An explicit numerical study of the great variety of possible structures in
phase space for the Sitnikov problem has been done by Dvorak [14]. Using
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Fig. 1. Geometry of the Sitnikov problem.

Melnikov’s method H.Dankowicz and Ph.Holmes [15] were able to show the
existence of transverse homoclinic orbits. They proved that for any but a
finite number of values of the eccentricity e the system is non-integrable,
chaotic.

The main objective of this Chapter is to show through analytical and
numerical methods the existence of stabilized orbits in this special restricted
three-body problem and consequently, in the general three-body problem.
The equation of motion can be written, in scaled coordinates and time as

z̈ +
z

[ρ(t)2 + z2]3/2
= 0, (2)

where z denotes the position of the particle µ along the z-axis and ρ(t) =
1 + e cos(t) + O(e2) is the distance of one primary body from the center of
mass. Here we see that the system (2) depends only on the eccentricity, e,
which we shall assume to be small.

We first consider the circular Sitnikov problem i.e. when e = 0, for which

H =
1
2
v2 − 1√

1 + z2

v = ż.

(3)

The level curves H = h, where h ∈ [−2, +∞), partition the phase space
(v, z) into qualitatively different types of orbits as shown in Fig. 2. We are
interested in solutions that correspond to the level curves H = 0, namely
two parabolic orbits that separate elliptic and hyperbolic orbits and can be
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Parabolic: h=0

Hyperbolic:h>0

Elliptic: -2<h<0
Z

V

h=-2

Fig. 2. Phase portrait for the unperturbed Sitnikov problem.

considered as a separatrix between these two classes of behavior. Further
from Eq. (2) it is easy to show that there are just two fixed points: (0,0)
— the center at the origin and (±∞, 0). Making use of the McGehee trans-
formation [15] the fixed points at (±∞, 0) correspond to hyperbolic saddle
points. Then taking into account that parabolic orbits act as connections
or heteroclinic orbits between these two fixed points one may conclude that
the stable and unstable manifolds of saddles correspond to the parabolic
orbits.

To make clear how this problem is related to heteroclinic orbits, let us
employ the non-canonical transformation [15]:

z = tan u, v = ż, u ∈
[
−π

2
,
π

2

]
, v ∈ R. (4)

Then the Hamiltonian for the equation (2) in the new variables (u,v) has
the form:

H(u, v) =
1
2
v2 − 1

ρ(t)2 + tan2 u
=

H0(u, v) + eH1(u, v, t, e),

(5)

where H0(u, v) =
1
2
v2 − cosu. One can see that when e = 0 the form of the

Hamiltonian that obtained after the non-canonical transformation exhibits
the pendulum character of motion.

Based on this connection between the dynamics of the nonlinear pendu-
lum and the Sitnikov problem one can show that if e ∈ (0, 1) then for all but
a possibly finite number of values of e in any bounded region, the system
(2) is chaotic [15]. In this work we consider only small values of e. Hence
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due to the KAM-theory [16], since our system has 3/2 degrees of freedom
the invariant tori bound the phase space and chaotic motion is finite and
takes place in a small vicinity of a separatrix layer.

3. Stabilization of Chaotic Behavior in the Vicinity of a
Separatrix

As mentioned in the introduction, our analysis is directed to the stabiliza-
tion of this chaotic behavior in the elliptic Sitnikov problem. In general, this
problem is related to the stabilization and control of unstable and chaotic
behavior of dynamical systems by external forces. Since there are situa-
tions for which chaotic behavior might be undesirable, different methods
have been developed in the past years to suppress or control chaos. The
idea that chaos may be suppressed goes back to the publications [17, 18]
where it has been proposed to perturb periodically the system parameters.
The method of controlling chaos has been introduced in the paper [19]
(the history of this question see in review [20]). A comprehensive study of
chaotic systems with external controls was done in [21, 22]. Further we will
give a brief review of these results. In this section we apply the Melnikov
method, which gives a criterion of the chaos appearance, to the analysis of
the system behavior under external perturbations. The idea is that such an
approach can give us an analytical expression of the perturbations which
leads to the chaos suppression phenomenon.

We explain the idea by using a general two-dimensional dynamical sys-
tem subjected to a time-periodic external perturbation, and consequently
possessing a three dimensional phase space.

3.1. Melnikov function

It is well known that in Hamiltonian systems, separatrices can split. In this
case stable and unstable manifolds of a hyperbolic point do not coincide,
but intersect each other in an infinite number of homoclinical points (usu-
ally the motion in the (n + 1)–dimensional phase space (x1, · · · , xn, t) is
considered in the projection onto a n–dimensional hypersurface t = const
(Poincaré section)). The presence of such points gives us a criterion for the
observation of chaos. This criterion can conveniently be obtained by the
Melnikov function (MF), which “measures” (in the first order of a small
perturbation parameter) the distance between stable and unstable mani-
folds.
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a) b)

c) d)

Fig. 3. Poincaré section t = const (mod T ) of the system (Eq. 6) for ε = 0 (Fig. 3(a))
and ε �= 0 (Figs. 3(b) to 3(d)).

Melnikov analysis is based on the paper [23]. First, we consider a two-
dimensional dynamical system under the action of a periodical perturbation
with the property of having a unique saddle point:

ẋ = f0(x) + εf1(x, t), (6)

Let furthermore x0 be the separatrix of the unperturbed system ẋ = f0(x).
Then the MF at any given time t0 is defined as follows:

D(t0) = −
∫ +∞

−∞
f0 ∧ f1

∣∣∣∣
x=x0(t−t0)

dt,

where the integral is taken along the unperturbed separatrix x0(t− t0) and
the integrand is f0 ∧ f1 = f0xf1y − f0yf1x.

In general, in dissipative systems one can observe three possibilities for
the MF: either D(t0) < 0 (Fig. 3(b)), D(t0) > 0 (Fig. 3(c)) for any t0 or
D(t0) changes its sign for some t0 (Fig. 3(d)). Only in the last case chaotic
dynamics arises. Thus, the MF determines the character of the motion near
the separatrix. Note that the Melnikov method has a perturbative (to first
order) character, thus, its application is allowed only for trajectories which
are sufficiently close to the unperturbed separatrix.
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3.2. Function of stabilization

The Melnikov method has been applied in a lot of typical physical sit-
uations (see Refs. [24–29]) in which homoclinic bifurcations occur. Here
we consider an application of the Melnikov method to the analysis of the
chaos suppression phenomenon in systems with separatrix loops. Such an
approach allows us to find an analytical expression of the perturbations
for which the Melnikov distance D(t0) does not change sign (see also [30])
suppressing the chaotic behavior and stabilizing the orbits of the system.

We consider the problem of stabilization of chaotic behavior in systems
with separatrix contours that can be described by Eq. (6)

ẋ = f0(x) + εf1(x, t),

where f0(x) = (f01 (x), f02 (x)), f1(x, t) = (f11 (x, t), f21 (x, t)). For this

equation the Melnikov distance D(t0) is given by D(t0) = −
∞∫

−∞
f0 ∧ f1dt ≡

I[g(t0)]. Let us assume that D(t0) changes its sign. To suppress chaos we
should get a function of stabilization f∗ (ω, t) that leads us to a situation
where separatrices do not intersect:

ẋ = f0(x) + ε [f1(x, t) + f∗(ω, t)] , (7)

where f∗(ω, t) = (f∗
1 (ω, t), f∗

2 (ω, t)). Suppose D(t0) ∈ [s1, s2] and s1 <

0 < s2. After the stabilizing perturbation f∗(ω, t) is applied we have two
cases: D∗(t0) > s2 or D∗(t0) < s1, where D∗(t0) is the Melnikov distance
for system (7). We consider the first case (analysis for the second one is
similar). Then

I[g(t0)] + I[g∗(ω, t0)] > s2, (8)

where I[g∗(ω, t0)] = −
+∞∫

−∞
f0 ∧ f∗dt. Expression (8) is true for all left

hand side values of inequality that is greater than s2. It is derived that
I[g(t0)] + I[g∗(ω, t0)] = s2 + χ = const, where χ, s2 ∈ IR+. There-
fore I[g∗(ω, t0)] = const − I[g(t0)]. On the other hand, I[g∗(ω, t0))] =

−
∞∫

−∞
f0 ∧ f∗dt. We choose f∗ (ω, t) from the class of functions that are

absolutely integrable on an infinite interval such that they can be rep-
resented in Fourier integral form. Then f∗ (ω, t) = Re{Â(t)e−iωt}. Here
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we suppose that Â(t) = (A(t), A(t)) i.e., assume that the regularizing per-
turbations applied to both components of Eq. (7) are identical. Therefore

−
∞∫

−∞
f0 ∧

{
Â(t)e−iωt

}
dt = const − I[g(t0)]. The inverse Fourier transform

yields: f0 ∧ Â(t) =

∞∫
−∞

(I [g (t0)] − const) eiωtdω. Hence,

A(t) =
1

f01(x) − f02(x)

∞∫
−∞

(I [g (t0)] − const) eiωtdω. (9)

Here A(t) can be interpreted as the amplitude of the “stabilizing” pertur-
bation. Thus, for system (6) the external stabilizing perturbation has the
form:

f∗ (ω, t) = Re


 e−iωt

f01(x) − f02(x)

∞∫
−∞

(I [g (t0)] − const) eiωtdω


 . (10)

Here it is significant to note that in the conservative case: const=0.
Let us now consider the stabilization problem for systems of the type

ẋ = P (x, y),
ẏ = Q(x, y) + ε[f(ω, t) + αF (x, y)],

(11)

where f (ω, t) is a time periodic perturbation, P (x, y), Q(x, y), F (x, y) are
some smooth functions and α is the dissipation.

We investigate the case which is typical for applications with a single
hyperbolic point at the origin x = y = 0 when P (x, y) = y. Let x0(t) be the
solution on the separatrix. In the presence of the perturbation the Melnikov
distance D(t0) for the system (11) may be written as

D(t0) = −
∞∫

−∞
y0(t − t0) [f(ω, t) + αF (x0, y0)] dt ≡ I[g(ω, α)], (12)

where y0 (t) = ẋ0 (t). Let us suppose again that the Melnikov function (12)
changes sign, i.e., the separatrices intersect. We will find an external reg-
ularizing perturbation f∗(ω, t) = Re{Â(t)e−iωt} that stabilizes the system
dynamics:

ẋ = y,

ẏ = Q(x, y) + ε[f(ω, t) + αF (x, y) + f∗ (ω, t)].
(13)
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It is significant to note that since the system (11) depends on parameter α

then such stabilization should be made at every fixed value of this parameter
and further, instead of I[g(ω, α)], we will write I[g(ω)]. For (13) we have
f01 = y, f02 = Q(x, y) and Â(t) = (0, A(t)). Consequently the value A (t)
has a form

A (t) =
1

y0 (t − t0)

∞∫
−∞

(I [g (ω)] − const) eiωtdω. (14)

So, for (13) the stabilizing function can be represented as

f∗ (ω, t) = Re


 e−iωt

y0 (t − t0)

∞∫
−∞

(I [g (ω)] − const) eiωtdω


 . (15)

Now, let us find a regularizing perturbation in the case when the Mel-
nikov function D(t, t0) admits an additive shift from its critical values.

Again, we analyze the case when D∗(t0) > s2 is satisfied. Suppose
that αc corresponds to the critical value of the Melnikov function, Ic =
I[g(ω, α|α=αc

)]. Then, a subcritical Melnikov distance can be expressed
as Iout = Ic − a, where a ∈ IR+ is constant. Assuming that the system
perturbed by f∗(ω, t) exhibits regular behavior, we have

I ′ = Iout + I [g∗ (ω)] > s2. (16)

Here I [g∗ (ω)] = −
+∞∫

−∞
y0 (t − t0) f∗ (ω, t) dt. On the other hand, it is obvi-

ous that we can take any I ′ a fortiori greater than Ic:

I ′ = Ic + a > s2. (17)

Now, equating the left-hand sides of (16) and (17), we obtain I [g∗ (ω)] = 2a.
Substituting f∗ (ω, t) = Re{A(t)eiωt} into the expression for I[g∗(ω)], we

find −
∞∫

−∞
eiωtA(t)y0(t − t0)dt = 2a. The inverse Fourier transform yields

A (t) y0 (t − t0) = −2a

∞∫
−∞

e−iωtdω. Hence,

A (t) = − 2a

y0(t − t0)

∞∫
−∞

e−iωtdω = − 4πaδ(t)
y0(t − t0)

. (18)
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Thus, the dynamics of the systems that admit an additive shift from
the critical value of the Melnikov function D(t0) are regularized by the
perturbation:

f∗ (ω, t) = − 4πaδ(t)
y0(t − t0)

cos(ωt), (19)

where δ(t) is a Dirac delta–function defined as follows:

δ(t) =
{

0, t �= 0,

∞, t = 0.

In the general case, if f0 = (f01(x), f02(x)), then we obviously obtain

f∗ (ω, t) = − 4πaδ(t)
f01(x) − f02(x)

cos(ωt). (20)

From the physical point of view the dynamics of the chaotic system are
stabilized by a series of “kicks”. This result could be easily extended on
case when the stabilizing function f∗ (ω, t) is Gaussian function. The orbit
that was chaotic and became regular under the influence of the external
perturbation we call the stabilized orbit.

4. Stabilization of Chaotic Behavior in the Extended
Sitnikov Problem

In the vicinity of the orbiting primaries there exist five equilibrium points
lying in the z = 0 plane. The points L1, L2, L3 are unstable and collinear
with the primaries, while each of L4 and L5 forms an equilateral triangle
with the primaries and are stable, depending on the mass of the primaries.
Let us now consider two bodies of mass m that are placed in the neighbor-
hood of the stable triangular Lagrange points of the Sitnikov problem (see
Fig. 4). Here we treat only the hierarchical case: µ � m < M . In the new
configuration that constitutes the extended Sitnikov problem a particle of
mass µ experiences forces from the primaries and masses m placed close to
L4 and L5. These forces are perpendicular to the primaries plane and there-
fore the particle’s motion remains on the z axis. Since the bodies of mass
m orbit around their common center of mass, their distance ρ′ alternates
between ρ′min (periastron) and ρ′max (apastron), consequently the forces
between these bodies and the particle µ increase in a close encounter to
the barycenter and vanish as the bodies move away from z axis. So we can
achieve the situation where the influence of bodies that are placed in the
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L
5

M

m

M

m L
4

�

Z

Z

Fig. 4. Geometry of the Extended Sitnikov problem.

vicinity of the triangular Lagrange points of the particle µ can be presented
as a series of periodic Gaussian function-like impulses.

Recall that earlier we showed how the elliptical Sitnikov problem deals
with heteroclinic orbits that lead to non-integrability due to the existence
of transverse heteroclinic points. It was done through the connection be-
tween this problem and the pendular character of motion described by (5).
Therefore taking into account the new configuration of the restricted three-
body problem (Fig. 4) we may say that there is a connection between the
extended elliptical Sitnikov problem and the motion of the chaotic nonlin-
ear pendulum with an external impulse-like perturbation. The Hamiltonian
of such system changes to

H(u, v) =

H0(u, v) + e [H1(u, v, t, e) + H∗
1 (u, v, t, e)] ,

(21)

where H∗
1 (u, v, t, e) - the part of Hamiltonian that is responsible for impul-

sive forces that the particle µ experiences from bodies in the neighborhood
of L4 and L5.

Now taking into account the result of the previous paragraph we con-
clude that the forces which the particle experiences from bodies in the
neighborhood of L4 and L5 act on the chaotic behavior of µ as an external
stabilizing perturbation and the system (21) represents the system with the
stabilized chaotic behavior that corresponds to the stabilized orbits in the
extended Sitnikov problem. As mentioned before, in the circular Sitnikov
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Fig. 5. Phase portrait of the particle motion in Sitnikov problem.

problem when e = 0 the phase space is partitioned into invariant curves
corresponding to different energies. For e > 0 this structure is broken. This
is apparent for eccentricity e = 0.07 in Fig. 5: just a few invariant curves
survive. In this figure we also can see hyperbolic and parabolic orbits that
correspond to energy h ≥ 0. These orbits escape to infinity with positive or
zero speed respectively. Now, if we consider the extended Sitnikov problem
then one can see (Fig. 6) that all orbits are in a bounded region and there
are no escape orbits. So one may infer that stabilized orbits of the pendu-
lum system with Hamiltonian (21) correspond to the stabilized orbits in the
extended Sitnikov problem, thus confirming the conclusion that we made
before. The extension of the analysis carried out above to the corrections
of higher order in ε of Eq. (2) and numerical verification of the obtained
results could be found in [31].

In summary, we have performed a study of the existence of a qualita-
tively different orbit from those previously known in the three-body prob-
lem: the stabilized orbits. On the basis of the elliptic Sitnikov problem we
constructed a configuration of five bodies which we called the extended
Sitnikov problem and showed that in this configuration along with chaotic
and regular orbits the stabilized orbits could be realized.
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Fig. 6. Phase portrait of the stabilized particle orbits in the extended Sitnikov problem.
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