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Chaos-Coded Modulations Over Rician and Rayleigh
Flat Fading Channels

Francisco J. Escribano, L. López, and M. A. F. Sanjuán

Abstract—In this brief, we analyze a kind of chaos-coded modu-
lations over both Rician and Rayleigh frequency non-selective un-
correlated fading in the presence of additive white Gaussian noise.
We provide bounds both for the case when perfect channel-state
information (CSI) is available at the decoder and when there is no
CSI. We show that the bounds proposed can be tight enough to
give reason of the behavior of these systems in a flat fading channel.
We compare the results with a related trellis-coded modulation and
show that the degradation in performance can be at least as low as
with conventional coded modulation systems.

Index Terms—Chaos, error analysis, fading channels, modula-
tion coding.

I. INTRODUCTION

SOME recent works have stressed the fact that chaos-coded
modulation (CCM) systems working at a joint waveform

and coding level can be efficient in additive white Gaussian
noise (AWGN) [1], [2]. This contrasts with previous state of
the art [3]. This success has been achieved by building a bridge
linking the fields of chaos theory and digital communications.
But there is still a need to evaluate these promising develop-
ments in other environments. That is why we address here the
task to provide bounds on the bit-error rate (BER) for a whole
kind of CCMs in flat fading channels. Chaos-based modulation
systems working at the waveform level have already shown to
be of potential use in multipath fading channels [4], as well as
chaos-based systems working at the coding level [5]. Though
we have chosen only some examples in order to show the re-
sults and the accuracy of the bounds, the principles shown can
be straightforwardly applied to any CCM allowing a represen-
tation in terms of a trellis. The comparison with a conventional
trellis-coded modulation (TCM) system allows us to foresee
good possibilities for this kind of CCM in dispersive channels,
where the bounds provided can be useful in design and evalua-
tion tasks.
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II. SYSTEM DESCRIPTION

The chaos-coded modulator accepts as input an identically
and independently distributed (i.i.d.) bit sequence ,
and produces a chaos-coded sequence, based on switched
chaotic maps driven by small perturbations [1], [2], following:

(1)

where and are chaotic maps
that leave the interval [0, 1] invariant. They are piecewise-linear
maps with slope 2. The natural number controls the am-
plitude of the small perturbation term, so that it manifests itself
after iterations. It has been shown that this kind of en-
coder leaves a set of
points invariant [1], so that, when taking as initial condition a
point from (e.g., ), will lie in . In this way, we
have a quantized chaotic sequence over values.

We consider the following pairs of maps and .
1) Bernoulli shift map (BSM)

(2)

2) Tent map (TM)

(3)

3) The BSM and its shifted version (multi-BSM, mBSM)

(4)

(5)

4) The TM and its shifted version (multi-TM, mTM)

(6)

(7)

In Fig. 1, we have depicted them. These CCM systems, when
restricted to , allow an equivalent representation in terms of a
trellis encoder, where the transitions are driven by the input bit

. Therefore, such CCM systems are closely related to TCM
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Fig. 1. Maps for the CCM encoders. Continuous line: � ���. Dotted line: � ���.
(a) mTM (continuous line: TM). (b) mBSM (continuous line: BSM).

Fig. 2. Finite-state encoding structure for the mTM CCM.

systems with rate [1]. In Fig. 2, we can see
the equivalent trellis encoder for the mTM CCM.

The channel is affected by fast flat fading [6]. It is described
by an uncorrelated sequence of amplitudes which follow a
Rician probability density function (pdf) given by

where is the zeroth-order modified Bessel function of the
first kind, is the ratio of specular to diffuse energy [6], and

. corresponds to the Rayleigh case, and ,
to no fading. The mean and variance are given by

where is the first-order modified Bessel function of the first
kind. , so that the signal to noise ratio is not affected.
The channel is further described by AWGN, which adds i.i.d.
Gaussian samples with mean 0 and power .

Due to the trellis coded properties of the signal, the receiver
can be designed by using maximum likelihood (ML) or max-
imum a posteriori (MAP) sequence decoding algorithms. In
this case, we have used a known MAP soft-input soft-output
(SISO) decoder adapted to the decoding of this kind of chaotic
sequences in the AWGN channel [7]. We do not review the
details of this SISO module here. We point out instead the
needed arrangements for the flat fading channel. The SISO
decoder takes as input a block of received samples

(8)

To process them, the channel metrics have to be adapted to the
two possible situations respecting the knowledge of the channel
state at the decoder. In the best situation, the sequence of fading

amplitudes is known due to the presence of
a channel-estimation method [channel-state information (CSI)
case]. In this situation, the SISO decoding algorithm uses the
metric [6]. In the other case, the receiver has only
information, if any, about some parameters of the channel, such
as the mean (case without CSI). Now the metric for the SISO
decoding algorithm is taken as [8].

III. PERFORMANCE ANALYSIS

There will be an error event when having sent the sequence
, the decoder chooses , both sequences starting in

the same state and merging again in (possibly) other state after
steps.1 Assuming ML decoding2 and using the mentioned

channel metrics, this is equivalent to

(9)

for the perfect CSI case, and

(10)

without CSI [6]. After some algebra, we get the inequalities

(11)

(12)

where and are random variables (RVs) whose meaning will
be clear in the sequel. The right-hand side members of (11) and
(12) are Gaussian RVs because they are weighted sums of in-
dependent Gaussian RVs. , , , and are assumed to be
known in this step, since we are calculating the conditioned pair-
wise-error probability (PEP). Therefore, the PEPs conditioned
to the fading amplitudes are [6]

(13)

(14)

1Note that the error events cannot be simply calculated by supposing having
sent the all zero codeword, since these systems are nonlinear. We are also as-
suming implicitly that � � � .

2Since the a priori probabilities of � are the same, MAP decoding is equiv-
alent to ML decoding.
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where is the squared Euclidean
distance between and , is the power of the chaos
modulated signal,3 and is the signal to noise
ratio in terms of the ratio of bit energy to noise power-spectral
density. We have also made use of [9].

Taking into account the fact that is a sum of noncentral
RVs with known statistics, and , for , a Gaussian RV
by virtue of the Central Limit Theorem [9], the unconditioned
PEPs can be upper bounded by

(15)

(16)

There, we have defined

Note that (16) tends to 0 when , but the simulations
will show an error floor. This can be accounted for seeing that
the right-hand side member of (12) is only affected by noise for
fixed and . This term becomes negligible when the noise
power is much lower than the signal power,4 so that the error
event will only depend on , following:

(17)

Using the fact that the left-hand side member of (17) is again a
Gaussian RV for , we arrive at

(18)

A. BEP With CSI

To give a bound for the bit-error probability (BEP), we have
to analyze the most probable pairwise-error events and the re-
lated binary error events. In (15) we see that the most probable
pairwise-error events when will be those with

3All these CCMs generate uniformly distributed chaotic samples within
[�1,1]. � � ��� for ���, but, if � � �, the difference is negligible.

4Specially when � is small and the dispersion of the values � is high.

minimum , . These error
events will be the ones leading to minimum for the kind of
CCMs seen here.5 In the case of BSM,6 such binary error events
have length and are of the type
vs , with . Thus, the associated
binary error event is , and
has Hamming weight . It leads to

, [1], with independence
of previous values of and , so that

(19)

where is the bit enumerator of these error events.
In the rest of CCMs seen (mBSM, TM, mTM), since they

not comply with the uniform error event property [6], the error
events associated with minimum lead to different values for

depending on the exact values of and . The
mBSM CCM has the same kind of binary input errors events
leading to minimum as the BSM CCM (i.e.,
and ), while for the TM and the mTM CCM we have
the input binary error events with , and

. To calculate the bound, it is enough to
consider the equiprobable possible values for , and the

equiprobable possible values for , because
the rest of values of and are determined by them and by
the binary error event associated to each CCM.

Now, taking into account that there will be equiprob-
able sequences , , related to
such error event, the average bound for is

(20)

where the summation is taken over such different se-
quences , ,

is as seen in (15) and is 1 for the mBSM
CCM, and for the TM and mTM CCMs. Note that, due to the
structure of (15), one could think of managing the final error
rate by increasing and thus the loop length . Nevertheless, as
seen in the case of the BSM [bound (19)], the terms
decrease with increasing powers of 1/4, so that there exists a
tradeoff and the result is almost insensitive to . This happens
also with the rest of CCMs proposed here, since, due to the

2 map slope, will also decrease with increasing
powers of 1/4 [1].

B. BEP Without CSI

The analysis is more involved without CSI, since, as seen
in (16) and (18), the PEP depends on the exact values of
through . Nevertheless, the bound can still be calculated
with the error events associated with the minimum of , since

. We have again equiprobable possible values
for , and possible input sequences . Each

5Such error events correspond to the ones with minimum loop length �.
6For BSM, � � ��� if ���. It is a good approximation if � � �.
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Fig. 3. Results in Rayleigh fading with CSI (continuous lines), for BSM, TM,
mBSM, and mTM CCMs with� � �, and for TCM (‘�’). ‘ ’: BPSK bounds.
Marked with arrows: results in AWGN. Dash-dotted line at the right of each
CCM curve is the corresponding bound.

of these sequences is equiprobable, so that, in the midrange
region where (16) is valid, the average BEP associated

with such error events will be

(21)

where , and are as in the CSI case. When
and we are in the error floor region, we get

(22)

IV. SIMULATION RESULTS AND DISCUSSION

In Figs. 3 and 4, we can see the simulation results and
bounds for fading with CSI. For comparison, we have depicted
the bounds for binary phase-shift keying (BPSK) [6], and
simulation results for a conventional TCM
scheme consisting on a constraint length encoder with
polynomials 06 and 23 and quadrature phase-shift keying
(QPSK) modulation [10]. It is a rotationally invariant system
suitable for fading channels. All simulations have been run
with a block length of symbols.

Though the CCMs seen, excepting the TM CCM, exhibit per-
formances close to BPSK in AWGN, in presence of fading their
coded nature leads to much lower losses. This means that they
can keep the good properties of coded modulations in fading [6].
Note that the TM case is the worst in BER, but it also has the
lowest losses in Rayleigh fading with CSI. In Fig. 4, we verify
how the Rician channel tends to the AWGN one when ,
and that there is a steady coding gain with respect to uncoded

Fig. 4. Results in Rician fading with CSI (continuous lines), for BSM, TM,
mBSM, and mTM CCMs with � � �. ‘�’: BPSK bounds. ‘ ’: TCM results
with� � �. Dotted lines at the right of each CCM curve are the bounds.

Fig. 5. Results in Rician fading without CSI, for BSM, TM, mBSM, and mTM
CCMs with� � �. Dashed horizontal line close to each CCM curve: error floor
bound. Dash-dotted line: bound of (21). ‘�’: results for TCM.

BPSK. Moreover, the bounds shown in Figs. 3 and 4 are good
enough to give reason of the BER for high . Note that
the best CCMs shown, mBSM and mTM, exhibit losses in the
fading channel with respect to the AWGN channel that are com-
parable to the losses of the conventional TCM system: for

, the losses for a BER of lie always around 7 dB, and for
, around 4.5 dB.

In Fig. 5, we plot the results without CSI. Note the presence
of an error floor whose value diminishes when . For

high enough to have a distinct waterfall region, the bound
of (21) shows to be accurate enough, while the bound of (22)
gives a very tight approximation to the error floor. Note that
the TCM and the mTM systems have the same performance for

, while, for , the TCM clearly outperforms all the
CCMs. This points towards a potential advantage of the CCMs
with respect to conventional TCM when there is no CSI and the
channel tends to a Rayleigh one.
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Fig. 6. Results in AWGN (continuous lines) and Rayleigh fading with CSI
(dashed lines), for mBSM with different �. Dash-dotted lines over the mBSM
results are bounds for � � � and � � �. Upper continuous line: BSM results
for� � � with � � �. Upper dash-dotted line: BSM bound with � � ���.

It is known that, in fading channels with CSI, TCMs should
be designed with the largest minimum error loop length , and
with the highest product distance [6].
In the case without CSI, the behavior of TCM is dominated by
the minimum Euclidean distance [6]. This is a difference with
respect to our kind of CCM. As pointed out by the bounds, the
loop length can be virtually made as high as desired just by
increasing , while the product distance tends to 0. The Eu-
clidean distance remains bounded with [1], and thus

. Due to all this, we can foresee that these CCMs will
be relatively insensitive to . In Fig. 6, we have plotted sev-
eral curves with different . The results and the bounds for the
mBSM CCM, both in the AWGN channel and in the Rayleigh
fading channel with CSI, show that the effect of is small, pro-
vided that . The results for the BSM CCM with in
the Rayleigh channel with CSI, when compared with the bound
depicted for the same case with [using (19)], stress this
relative insensitivity.7 Though not shown, this property holds
without CSI. Thus, in practice can be kept low (the decoder
works over states), while preserving the properties of the

case.8
Taking all this into account, we can say that the behavior

of these kind of chaos-based systems does not rely on con-
ventional parameters, like loop length, product distance or Eu-
clidean distance. They rely instead on the complex structure
introduced in the spectrum of symbolic distances
and for the class of most probable error events,
and this depends on the structure of the chaotic maps involved.
Moreover, we have seen that the BSM offers regularity but it is
not useful, while the TM is a pathological system [1], but we
have verified that, introducing them in a switched map scheme,
we can get gains in AWGN and fading. We have thus achieved

7This bound is feasible thanks to the quasi-linear structure of BSM.
8Note that � � � is the lowest value for the bounds to be useful, since � �

� � � � � was assumed in the calculations.

a positive modification in the spectrum of said symbolic dis-
tances. This is equivalent to focusing on multiplicities of error
events rather than just on distances, and this is precisely the phi-
losophy of successful turbocodes [8].

V. CONCLUSION

We have developed here some bounds for a kind of CCMs
based on switched chaotic maps driven by small perturbations,
and we have shown that these bounds, when considering a lim-
ited number of error events, can be useful to estimate the final
performance of the system. We have also shown that, in case of
perfect CSI, these CCMs can offer in general a steady coding
gain with respect to uncoded BPSK, even when in the AWGN
channel could be the opposite, while exhibiting a degradation
not worse than with conventional TCM systems. When no CSI
is available, we have verified the appearance of an error floor and
a much poorer behavior, so that in this case these modulations
require diversity strategies to be of potential use. Nevertheless,
CCM systems have shown a relative advantage with respect to
conventional TCM in the quasi-Rayleigh channel without CSI.
One of the main advantages of the chaos based signals used,
together with the fact that the encoder allows a very simple im-
plementation, is that they offer the same performance with inde-
pendence of the quantization level, provided that it is higher than
a minimum, but that can be kept low enough to make MAP or
ML sequence decoding feasible. In this way, the bounds can be
managed statistically with the case, and made useful in
design and evaluation tasks. It has been shown that chaos-based
techniques can be most useful in environments where the sta-
tistical properties of the signals are the dominant factor [5], and
this allows us to foresee the possibility to build good performing
CCM systems in the fading channel with the help of the princi-
ples and tools shown.
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