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Abstract

Photoelastic isochromatics are computationally reconstructed from the results of finite element analysis. Fast variation of the

components of stresses cannot be approximated by a coarse non-adaptive finite element mesh. Visually chaotic and attractive looking

pattern of numerically reconstructed photoelastic fringes prevents interpretation of the field of stresses around the regions of

concentrated stresses. The phrase ‘‘chaotic pattern’’ is used in this paper in a loose sense to refer to the intricate and unpredictable

patterns produced by this approach. One goal of this paper is to present these photoelastic patterns for their aesthetic appeal.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Computational mechanics is a fundamental part of
computational science and engineering and is concerned
with the use of computational techniques to characterise,
predict, and simulate physical events and engineering
systems governed by the laws of mechanics. Research in
computational mechanics is usually interdisciplinary in
nature, reflecting a combination of concepts, methods, and
principles that often span several areas of mechanics,
mathematics, computer sciences and other scientific dis-
ciplines as well [1].

Hybrid numerical–experimental analysis techniques are
widely used in computational and experimental mechanics
[2]. Such techniques have seen limited applications during
the 1970s, but have been revived with the vastly improved
modern computational technology. By introducing the
experimental results as initial and boundary conditions,
modern computer codes can be used to yield results which
are unobtainable when only one of the two techniques is

used. The hybrid techniques thus exemplify the comple-
mentary role of the experimental and numerical techniques
especially in such areas as mechanical stress analysis [3,4].
Photoelasticity is one of the oldest methods for experi-

mental stress analysis, but has been overshadowed by the
finite element method (FEM) for engineering applications
over the past three decades [5]. However, new develop-
ments and applications, such as infrared photoelasticity,
low-cost dynamic photoelasticity, photoelastic applications
in stereoreolitography, etc., have revived the use of
experimental photoelasticity [6,7]. Thus, computational
mimicking of patterns of photoelastic fringes becomes an
important part of hybrid stress analysis techniques.
Unfortunately, conventional FEM techniques are based

on the approximation of nodal displacements (not stresses)
via the shape functions [8] whereas the formation of
photoelastic fringes is governed by the distribution of
stresses. Many engineering problems comprise concen-
trated stresses; therefore production of smooth patterns of
photoelastic fringes would require unrealistically dense
meshing. Ramesh and Pathak [9] have correctly noted that
photoelastic isochromatics can be effectively used for the
detection of FEM meshing problems. Photoelastic fringes
become unsmooth and accurate numerical reconstruction
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of the experimental pattern of photoelastic isochromatics
becomes very complicated around the regions of concen-
trated stresses. Adaptive FEM meshing, computational
smoothing of stress fields are common procedures used in
hybrid numerical–experimental techniques for realistic
visualisation of photoelastic patterns. Instead we will use
a non-adaptive FEM mesh and will focus on the beauty of
the photoelastic isochromatics around the regions of
concentrated stresses because the main goal of this paper
is to present these photoelastic patterns for their aesthetic
appeal.

2. Construction of digital phototoelastic images

A two-dimensional static stress problem is considered. A
FEM model yields the following relationship between the
nodal displacements and stress fields [8]:

sxðx; yÞ

syðx; yÞ

txyðx; yÞ

8><
>:

9>=
>; ¼ ½D�½B�fdg, (1)

where sx, sy and txy are the components of the stresses in
the problem of plain stress; [B] is the matrix relating the
strains with the displacements; [D] is the matrix relating the
stresses with the strains; {d} is the vector of nodal
displacements. Matrix [B] is comprised from partial
derivatives of the shape functions, which are used to
interpolate nodal displacements in the domain of every
finite element. Therefore, stress fields are continuous in the
domains of every finite element, but discontinuous at inter-
element boundaries of FEM mesh due to the operation of
differentiation.

The procedure of conjugate approximation [8] yields the
following algebraic system of equations for the determina-
tion of nodal values of stress:ZZ
GS

½N�T½N�dxdy fSig ¼

ZZ
GS

½N�Tsiðx; yÞdxdy, (2)

where [N] is the row vector of the shape functions of the
current finite element; si is the ith component of the stresses
(i ¼ 1,2,3); {Si} is the vector of smoothed nodal values of
the smoothed component of the stresses in the global
domain; GS stands for the procedure of global stiffness [8]
(assembly of local elements to the global FEM matrixes).
When the vector of nodal values of stresses {Si} is solved

from Eq. (2), the smoothed field of stresses is again
interpolated in the domain of every finite element using its
shape functions. Then, the principal stresses sa and sb are

calculated as the eigenvalues of the matrix
sx txy

txy sy

" #
at

any point in the global domain [5]. We use monochromatic
light for a better definition of the fringes, especially in areas
with dense fringes as at stress concentration points. The
greyscale intensity of the photoelastic image for the circular
polariscope (isochromatics) is calculated as

Iðx; yÞ ¼ ðsin Cðsaðx; yÞ � sbðx; yÞÞÞ
2, (3)

where C is the constant dependant on the thickness of the
analysed structure in the state of plane stress and on the
material from which it is produced [5]. The plotting
algorithm used to visualise the results of calculations is
independent from the physical model of the system and is
described in detail in [10].

3. Computational experiments

A model of a plane disk in diametral compression is a
paradigm in experimental stress analysis [2]. We use this
model to illustrate the beauty and complexity of photo-
elastic isochromatics around the regions of concentrated
stresses.
One-quarter of the disk is analysed; FEM meshes in

the state of equilibrium and in the deformed state are
presented in Fig. 1a. It is assumed that a flat not-
deformable boundary presses the top part of the quarter
disk. The degree of freedom of the nodes at the bottom of
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Fig. 1. Finite element mesh of a quarter of the disk: (A) 100 finite elements and (B) 400 finite elements.
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the quarter disk has zero displacement in vertical direction
and the degree of freedom of the nodes along the vertical
edge of the quarter of disk has zero displacement in
horizontal direction. First, static elastic equilibrium pro-
blem is solved and nodal displacements from the state of
equilibrium are calculated. Then, previously described
conjugate approximation is used to reconstruct nodal
values of stresses and, finally, photoelastic isochromatics
are plotted.

Two symmetric disk quarters are used to visualise the
area around the contact. It is clear that concentrated
stresses subjacent to the contact plane require a meshing
with vanishing elements at the contact point for exact
representation of the stress field. The pattern of isochro-
matics is refracted at inter-element boundaries which is a
mark of problems associated with meshing (Fig. 2). It is
naı̈ve to expect that non-adaptive FEM mesh can
reproduce satisfactory results around singular points.

Visually chaotic pattern of fringes is generated around
the contact area and compromise the physical interpreta-
tion of this pattern. Thick isochromatics at the bottom part
of the image (Fig. 2) provide a nice illustration of the
variation of the stress field in that area. One could expect to
see a similar pattern of experimental photoelastic fringes
for a disk in diametral compression [2]. But the picture
becomes not interpretable around the region of concen-

trated stresses. Computational ‘‘tools’’ used to measure the
fast variation of the physical quantity are simply too
‘‘rough’’.
In order to illustrate the unpredictability of this visually

chaotic pattern of fringes around the contact area we
repeat the computational experiment with a doubly dense
mesh (all other parameters, including the value of constant
C are kept the same). Hundred Lagrange nine node finite
elements are used to construct the mesh for the disk quarter
(Fig. 1a). The doubly dense mesh comprises 400 finite
elements (it is also a non-adaptive mesh) and is shown in
Fig. 1b; the produced pattern of isochromatics is presented
in Fig. 3. The fringes at the bottom part of Fig. 3 are
smooth and nice. One can still observe some slight fringe
discontinuities in the middle part of the image, but the
number of properly reconstructed fringes is much higher
compared to Fig. 2. Nevertheless, doubly dense mesh does
not help to improve the pattern of fringes around the
regions of concentrated stress. The zone of unphysical
behaviour of photoelastic fringes is smaller in Fig. 3
compared to Fig. 2, but visual stochasticity of the
photoelastic pattern is not less there. Moreover, the chaotic
fringe patterns in Figs. 2 and 3 are not similar. That is a
definite sign of the unpredictability of the distribution of
photoelastic fringes around the regions of concentrated
stresses.
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Fig. 2. Pattern of photoelastic isochromatics representing disk in diametral compression at C ¼ 300.

Fig. 3. Pattern of photoelastic isochromatics produced by doubly dense mesh.
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The readers can rather easily reproduce the greyscale
pattern of photoelastic isochromatics. Of course, one must
use FEM software to calculate nodal displacements from
the state of equilibrium. This is a basic step of FEM
analysis. Then, one needs to calculate nodal stresses. This is
also an ordinary feature of standard FEM packages.
Otherwise, one needs to solve the system of algebraic
equations defined in Eq. (2). Then, the nodal values of
stresses (sx, sy and txy) must be interpolated in the domain
of every finite element using its shape functions. Next, the
principal stresses sa and sb must be calculated at every
pixel of the digital image associated to a corresponding
point of the finite element structure. When this is done, the
last step is to calculate the greyscale intensity of the pixel
under consideration (Eq. (3)). One may vary the value of
constant C which determines the density of fringes in the
digital image.

The readers can experiment with different structures. Of
course, the most fascinating results are produced when the
structures contain singular points or regions with concen-
trated stresses. Disks and rings in diametral compression,
plates with notches or small holes in compression or
bending modes are just few examples of interesting objects.
Three-dimensional or full-colour photoelasticity can pro-
duce even more pictorial computational effects but is out of
scope in this paper.
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