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Abstract— Most of congestion control schemes require users consists of using concepts frgame theoryFrom
users to behave in a cooperative way, so that they respecta game-theoretic perspective, users are considered as the
some "social responsible” rules. However, without forcing game playersand congestion control schemes establish

end users to adopt a centralized mandated algorithm th lesAn i tant ti th .
controlling their behavior (which is not advisable), it is €game rulesAn important concept in game theory 1S

not possible to guarantee that they will not act in a selfish the Nash equilibrium: in our context, a Nash equilibrium
manner. Consequently, a fundamental issue is to evaluate is a scenario where no selfish user has incentive to

the impact of having users that act in such a manner. unilaterally deviate from its current state. Clearly, lggin

In such a scenario, having a Nash equilibrium guarantees ;, 4 Nash equilibrium means that we are in a stable state
that no selfish user has incentive to unilaterally deviate . .
in the presence of selfish users.

from its current state (i.e., it guarantees that we are in a
stable state in the presence of selfish users). a) Related Work:In [5], the author uses a M/M/1

However, here we formally prove that an efficient Nash model and shows that, with Markovian arrival rates,
equilibrium can not be reached in practice for any oblivious  the fair share allocation scheme is the only that can
control policy. guarantee Nash equilibrium within a subset of allocation

I. INTRODUCTION functions calledMAC. Akella et al. [2] consider TCP and

An important issue that has been largely studied ROve that RED does not have a Nash equilibrium. They
dealing with congestion control schemes. Since ma@JSC Use a variation of Choke [6] and, by using simula-
communication systems in our days are based on t@n: show that a good Nash equilibrium is reached. Garg
principle of sharing a common resource (e.g., a corf! @l [3], by using also TCP, show that, in the presence
munication link) among different users, one of the maifif selfish users, current schemes will inevitably lead to
objectives of such schemes is to establish a number&fongestion collapse. They propose a class of service
rules guaranteeing that the common resources are shafis§iPlines called DWS that punish misbehaving users
fairly among users. and reward congestion avoiding well behaved users.

However, most of those schemes require users toPutta et al: [4] consider a scgnario where the arrival
behave in a cooperative way, so that they respect sofdée Of users is modeled by a Poisson process. They show
"social responsible” rules. Nevertheless, many authof#at, by using oblivious policies, it is not possible to
have already noticed that, without forcing end users t§ach an efficient and fair Nash equilibrium. Observe
adopt a centralized mandated algorithm controlling thei@t, in this context, fair means that all users obtain the
behavior (which is not advisable), it is not possible t§2Me reward. Our paper is deeply inspired in this work
guarantee that they will not act in a selfish manner. Fnd can be considered to be an extension of it, where our
instance, the TCP control scheme is voluntarily in natuf@ntribution is the formalization of some of the claims
and critically depends on end—user cooperation [1]. Presented there. - _ _

Consequently, several authors have already evaluated? the next section we introduce our theoretic model.
the impact of having users that act in a selfish mai? Section Il we present a feature that has to be fulfilled

ner [2], [3], [4]. An interesting technique to model selfistPY the aggregate load at equilibrium satisfying an effi-
cient Nash condition. This result is used in Section IV
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about future work. Nonetheless, we are interested irsnmetric equi-

Il A GAME—THEORETIC MODEL Iibrium, which imposes\; = A\*/N. Hence the Nash
condition becomes

Game theory is a tool for analyzing the interaction \*
of decision makers with conflicting interests. Roughly g\ + =q(\*)=0. 3
speaking, @amehas three components: a set of players, ) N o
a set of possible actions for each player, and a set Bgmark that this symmetry condition implies that the
utility functions. goodput at equilibrium is the same for all plgyers, whlch
In our system, players are end—point traffic agentL:S.._the only way to guarantee that the obtained policy if
Those agents are selfish, i.e., they are only concernf@d: o ) )
about their own good. Each player has a strategy which €) Efficiency: On the other hand, given a solution
is to control the traffic that the player injects to thdor the Nash condition, it is also desirable that such
network. Currently, TCP traffic is the dominant traffic inS0lution has a good efficiency. It is said that a solution is
the internet and its selfishness can be controlled by tREicientwhen the aggregate goodput at equilibriym
two AIMD parameters [2]. However, this only covers gvhich is defined as
subset of selfish players (e.g., it does not covers UDP N N
traffic). For this reason, following a approach similar prEYopi =Y Ag(\) =Mq(\),  (4)
to [4], we model the traffic arrival rate of playeérby i=1 i=1
a Poisson process with average rate(for all players verifies thatlimy_.. ¢* is a positive constant.
in the system). d) Sensitivity:Observing Eq. 3 we may remark that
The rules of the games are determined by the quepe is, in general, a function of the numbé¥f. Hence,
management policy in routers. Here, we only considefe load offered by any of the players at equilibriich
oblivious policies, i.e., policies that do not differentiatealso depends oiV. In this situation, it is interesting to
between packets belonging to different flows. Such typiefine a parameter measuring the increase\omhen
of policies do not consider the current status of the nei¥ changes. With this purpose and similar to [4], we
work, but rather, its average status. For this reason, thieyroduce thesensitivity coefficienf\;(N) which can be
are very important because of its ease of implementatidefined as
and deployment. For instance, FIFO, the most commonly . .
used policy, is oblivious. Ai(N) = A (N) = X (N —1). )
In general, a user's utility depends on its goodpubbserve that\;(IV) is a measurement of how difficult is
loss rate and end—-to—end delay. However, for a majorifyr player: to reach a new equilibrium when the number
of applications the goodput is the most important fact@jt users increases frodv — 1 to N. For practical pur-
determining the user’s utility [3]. Therefore, we also asposes, it will be interesting to obtain oblivious policies
sume that the utility function of each player is equal to itgaving no sensitivity taV (A(N) = 0). We say that
goodputy;. Taking into account that we are considering policy is reachablein a practical situation if it has
oblivious policies, we have that; = A;(1 — p(\)) [7], no sensitivity toN. This would guarantee that, once all
where p(}) is the drop probability due to an averagéosts have reached the equilibrium, they will be able to
aggregate load ok = 31| \; and an average servicemaintain it without the need of passing a transient period
time of unity (v denotes the number of players). In ordepf time searching their new Nash conditions. Hence, in a
to simplify the analysis, and without loss of generalitypractical point of view, given thaV changes rapidly in
in the rest of the paper we assume that the service ratgeal Internet situation, having;(N) # 0 means that
of the system is normalized tb the system would be all the time out of the equilibrium.
b) Nash Equilibria: In a Nash equilibrium, no e) Our Work: In [4] it has been shown that whereas
player can increase his goodput by either increasiiggme policies do not impose a Nash equilibrium (e.g.,
or decreasing their input rate (throughput). Thus, thgrop-tail queueing or RED), there are some others that
following condition must be satisfied guarantee it (e.g., VLRED). Furthermore, from the latter
O ) type of policies, some cannot impose the existence of

ONi |\ =0, i=1...,N, (1) an efficient Nash equilibrium (e.g. VLRED) while oth-

where \* is the average aggregate load at equilibriur’rirnsa%u%ranltee a(ljnteEICIenttequmbrlu:nth(e.g.,tElf\l-A?M).
This condition can be rewritten as ogously and faking nto account Ine set of policies
that impose a Nash equilibrium, it has been also shown

g(N*) + Afq'(\*) = 0 where ¢(\) =1 —p(\). (2) that some of them are very sensitive (e.g., EN-AQM). We




note that it is possible to define policies haviig( N) = Consequently, if it is used the notatigh= (), the
0 for all + and N. For example, it can be shown thatNash condition in the continuum limit is written as

having an_qblivious_d_rop probability gf(\) = 1 —e~?, f) 4v)
the sensitivity coefficient\; (V') becomes zero for all q(v) ER O (7
and N. Proving this is immediate just by applying the ) ) ) ) o
Nash condition and verifying that! is a constant value ~Then, a first order ordinary differential equation is
independent ofV. obtained, .

From the above paragraph, we have that there are poli- _f) _ dq(v) 8)
cies that impose a Nash equilibrium which are efficient f(w) q(v)’

and reachable. However, our goal is to find a policy beinghose solution can be written formally as follows,

efficient and reachable at the same time. For instance, B 1)

the EN-AQM policy (which is efficient) has been shown g(v) =D e, ©)

in [4] not to be reachable. Similarly, that policy havingyhere D is a constant of integration afib) is defined

an oblivious drop probability op(\) = 1 —e~* (which in this manner

is reachable) is not efficient since the aggregate goodput :

at equilibriump* = N(1 — eV) goes to zero whemv I(v) = /@v dv. (10)

increases. In the following sections, it will be proved that f(v)

any efficient oblivious policy is sensitive to the numbeClearly, ¢(v) must be a well defined probability (i.e.,

of agents, which makes it unreachable for practicitl must be in the rang), 1]). The next lemma (whose

purposes. proof we omit for space reasons) shows the fornf @f)
At this point, we would like to remark that Dutta et al.to fulfill this.

have provided a result somehow similar in [4]. However, | emma 1:q(v) is a well defined probability if and

they assume that(A*) must be a non-decreasing angynjy if the function f(v) can be written as

convex function. Furthermore, they assume that their

sensitivity coefficient (defined a*(N) — A\*(N — 1) flo)=D €&, (11)

is N*. Such assumptions, although simplify the proof, 1, D’'> 0 and

are arbitrary. On the contrary, our result is completely

general. Surprisingly, we also prove that their assumption J(v) = L (v) +/ I+(22) dz, (12)
about the sensitivity coefficient (i.e., that must be of the v I

form N<) constitutes a sufficient condition to obtain armbeing 7, (v) such thatl(v) = —M + I, (v), with 0 <
efficient solution. M < oo andli(v) >0 forall v > 1.

Now, we use that result to demonstrate that any
efficient solutionf (v) satisfying the Nash condition must
verify thatlim, .o, f(v) = foo, With fo, € (0, 00).

As it has been stated previously, the average aggregat¢ emma 2: Any efficient f(v) that verifies the Nash
load at equilibrium\* derived from the Nash condition condition must verify that < lim,_.oc f(v) < .
depends onV, the number of agents involved in the  proof: The lemma is proved in two steps. First,
network. Hence\* is a discrete functionn* : N — R+, we present the restriction imposed ﬁ(’[}) by the Nash
which for every value ofV returns theA” imposed by condition. Second, we present the restriction imposed
the Nash condition fofV agents. on f(v) by having an efficient solution to the Nash

However, although\* is a discrete function ofV, condition.
it is always possible to regari” as a twice derivable | The restriction imposed by the Nash condition:
function f : R* — R* such thatf(NV) = A*(N) for all Since both terms in the right side of Equation 12
integerN. Therefore, Eg. 3 can be seen as the following 5,0 non-negative, then we have that) > 0
condition, which holds for alb > 1, for all v > 1. Assuming thatf(v) verifies the
Nash condition, from Equation 11 we have that
G [f(w)] =0, (6) f(v) > D' for all v > 1. Since D’ > 0 then
limy, 00 f(v) > 0.
where, according to the definition of, the derivative  « The restriction imposed by having an efficient solu-
must be understood d$' = dif(). For simplicity, let us tion to the Nash conditionBy reductio ad absur-
denoteq(v) instead ofg[f(v)]. dum Assume that there exists an efficient solution

IIl. THE NASH CONDITION IN THE CONTINUUM
LiMIT



to the Nash condition and prove that such solution
cannot be satisfied by an average aggregate load
f(v) verifying lim, ., f(v) = co.

If lim,— f(v) = oo, then, in order to obtain

a functiong(v) satisfying the Nash condition, we
have thatlim, .., J(v) = oco. If such a solution is
also efficient, the following condition must hold

0 < lim A*(v) ¢[A(v)] < o0,
which in the continuum limit implies that
0< lim f(v) €+ < o

Taking into account Eq. 11, the former condition
can be written as

0< lim €@ e +() < o

V— 00

which can only be true if

lim J(v) — I (v) # to0. (13)
Since lim,_,» J(v) = oo, Eq. 13 can only be
satisfied if lim,_o, I1(v) = oo. But, if it is

verified thatlim, ., J(v)—I;+(v) = constant, with
lim, 00 J(v) = 00 @andlim, . I+ (v) = oo, it is
easy to check that

J(v)

im =1
v—oo [ (v)

)

which implies (by definition of/(v)) that

whose solution can be written formally as

- = e @

where C is a constant of integration.
If Eq. 16 is taken into account, we have that, for
allv >V,

dv} =

S e

1+e¢

I (v) <C(1+¢€) exp [/ 02

C(1+e) exp [C’—

where C’ is a constant of integration. As a conse-
quence, it is derived that, for all > V'

_1+€
\%

where C” is a constant. Therefore, it is obtained that
lim,_c I+ (v) < co. However, this contradicts the
result derived from Eq. 13 (i.elim,_o I+ (v) =

00). Then, we conclude that any average aggregate
load f(v), such thatlim,_ f(v) = oo, cannot
result in an efficient solution to the Nash condition.

I;(v) <C (1+¢€) exp [C’ ] =C’, (21)

IV. EFFICIENT SOLUTIONS TO THENASH CONDITION

As it has been shown in Lemma 2, the efficient solu-
tions to the Nash condition must be searched among the
average aggregate loadév) such thatim,_,, f(v) =
Joor With foo €
asf(v) = fool[l+ f(v)], wheref(v) > —1forall v > 1

(0, 00). This case can always be written

and lim, . f(v) = 0. Then, I(v) can be written in

terms of f(v) as follows

: 1 YL (2)
1 dz = 1. 14
fm oy | (14)
Define the functiors(v) as follows:
_ 1 Y1 (2)
s(v) = T, (0) /1 e dz. (15)

We have that Eq. 14 imposes aifv) the condi-
tion lim, . s(v) = 1. Since it is also true that
lim, o 1/s(v) = 1, there exists som¥& > 1 such
that, for allv > V,

f(z) z dz.

1+ f(z) 22)

I(v) = cons+/
1

On the first hand and from the mean-value theorem
for integrals [8], it is derived thaf(v) is a constant for

all 1 < v < oo (it is the integration of a continuous

1
— < 1l+e.

s(v)

wheree is a positive real number.

(16)

function in a finite interval). Hence, in order to obtain
a solution to the Nash condition, it is not necessary to
verify that I(v) > —oc for all v > 1 but to check that

On the other hand, by definition efv), its deriva- lim, o I(v) # —oc.

tive with respect ta is the following
I, . :
0z $() I+ + s(v)14.

Then, the following ordinary differential equation
is obtained
I 1
I, s(v)v?

5(v)

s(v)’

(18)

INotice that — ()

On the other hand, sinckm,_.. f(v) = fw, the
condition of efficiency is verified whehm,_,, ¢(v) #
(17) 0. Then, from Eq. 9 is deduced that the efficiency is
guaranteed if and only fim, ., I(v) # co.

T z is a continuous function, since the average

z
aggregate loadf(v) was defined as twice derivable (recall that there
exists this freedom when the continuum limit is taken).



Therefore, there exists an efficient solution to the Nash Theorem 2 (Necessary Conditionlf:the Nash condi-
condition if and only if the conditionim,_.., I(v) # tion is verified efficiently, the following equation holds
+oo holds. That is, if and only if

. lim f:(v)v2 =0. (30)
/ Llj)v dv # +oo0. (23) Proof: Let us suppose théitm, . fL(v)v2 =A >
1 1+ £() 0. Then, for every A& (0,A), it is always possible to

In this section it is shown that, in general, not alfind av; > 1 such thatf(v)v2 >A, for all v > V.

average aggregate logtlv) such thatlim,—... f(v) = On the other handjim;_ ... f(v) = 0. Thus for every
[ satisfies Eq. 23. However, it will be demonstrated c (0, 1) there exists &% > 1 such that

that there are two conditions which define the set of 1
efficient solutions. —— >1—c, (31)

Theorem 1 (Sufficient Condition)f f(v) is a twice
derivable function which behaves asymptotically as for all v > V5. Hence, it is deduced from Eq. 23 that,
for all v > max{Vy, 52},

f(o)w ~ —— with a > 0. (24) .
v < flv)w? dv
then, an efficient solution is derived. cons= 1470 v > (32)
Proof: By definition of f(v), it is easy to check o 1 do
that 1 A +A"/ _ >
/() A—i—A”(l—e)/ 2=,
Thus, given any > 0, there exists som& > 1 such v v
that, for allv >V, where A is defined as
1 v :
— I <1l+e (26) _ f(’l})
‘1 + f(v) A= /1 PE T n f(v)v dv. (33)
Then, it is deduced that Consequently, it is a constant. This is a contra-
o f | f diction which arises because it was assumed that
fw) fw) , yhich
————v dv| < ————v|dv limy— 00 f(v)v? > 0.
1 1+ f(v) 1|1+ f(v) . . :
- . Similarly, whenlim, . f(v)v? = —A < 0, for every
<B4+ (1+ e)/ [f()|v do, A’ e (0,A), there exists som&; > 1 such tha:[f(v)v2 <
_ v —A, for all v > Vj. In addition, lim, ., f(v) = 0.
where B is a real number defined as Thus given anye > 0 there exists som&, > 1 such
v F that
f(v) 1

=— (27) — <1+ 34
~/1 1+ f(v) 1+ 7 2 (34)

If f(v)v ~ v=(+2) with o > 0, and taking into for all v > V4. Hence, it is derived from Eq. 23 that, for

account that the integration of a function which asymp'leI v >max{Vi, Va},
totically behaves as—(1*®) is a function which tends

o] ; 2
to zero asv — oo, it is straightforward to check that cons= f(v)f} v < (35)
o . 1 1+ f(v) v
/ |f(v)|v dv = B’ with B’ being a constant. (28) A_A /OO 1 dv <
v v 1+ f) v

Thus, it is deduced the condition given by Eq. 23. © du
Namely, A-A(1+ 6)/ —

. V v
/Oof(iii)vdv
1 14 f(v)

which implies that there exists an efficient solutiom

= —OQ.

Such contradiction only disappears when the condition
lim, .o f(v)v? < 0 is rejected.

Notice that it is only possible to find an &0 when
A is not zero. If A is zero the former reasoning fails

<B+(1+¢B <oo. (29




because the first case results in cang and the second cannot arrive properly at a stable equilibrium point (at
one derives in cons —oo and nothing can be argued. least, without any other additional mechanism). Such a
The previous results imply that, given an efficientesult is completely general since we have not made any
solution to the Nash condition, it is not feasible thaassumption, either about the behaviompdh*) or about
limy,_ o0 f(v)v2 # 0. But, it could be possible that thethe behavior of the sensitivity coefficient.
conditionlim,_.. f(v)v? = 0 was also rejected. In that Currently, we are involved in making a similar anal-
case, it would derive that there is no twice derivalfle YSIS but, instead of taking as user's utility its goodput,
verifying Eq. 23. That is, there is no efficient solutiof@king the end—to—end delay to define it. Also, we are

to the Nash condition. considering introducing the loss rate, in combination

However, in the previous theorem was demonstratégth either the goodput and the end-to-end delay, to
that the functionsf(v) which behave asymptotically asdefine the user's utility.

f(v)t ~v=0+9) with « > 0, are efficient solutions. But
these functions verify thdtm,, ., o, f(v)v2 = 0, thus this [y
condition defines a non-empty set of efficient solutions.
Therefore, it can be affirmed théiin,_, .o f(v)v2 =0 g
is a necessary condition to obtain an efficient solution to
the Nash condition. [ |

Discussion 3]

As it can be readily seen, the sufficiency condition
(Theorem 1) means that the set of efficient solutions |
bigger than the set of functions which asymptotically
behave asf(v)v ~ v~ (1) with o > 0. On its hand, !
the necessity condition (Theorem 2) means that the set
of efficient solutions is smaller than the set of functioni]
which verify thatlim, ... f(v)v? = 0.

From a practical point of view this means that the sgf;
of efficient solutions are functions such that asymptolg]
ically behave asf(v) ~ v=(1+% with a > 0. Conse-
quently, this implies that any oblivious efficient policy
must have an aggregate offered load at equilibriur) (
falling asymptotically to a positive constan) (vhen the
number of usersy) increases.

In terms of the offered load, this result tells us that, at
equilibrium, any efficient solution must have\a which
falls with v to a constant value at least ast—. As
our equilibrium is assumed to be symmetric, this implies
that, in the asymptotic limit, the load offered by any
of the hosts at equilibrium changes within the form
Aj (v) ~ £. Hence, the sensitivity coefficient for any host
behaves likeA;(v) ~ £ — —£ ~ — %5 in that limit.

This allows us to conclude that, in situations where
the number of sessions changes rapidly (which are
very realistic situations), the efficient equilibrium ofyan
oblivious efficient policy is not easily reachable, because
the offered load of hosts depend strongly on the number
of current sessions.

V. CONCLUSIONS

In this paper it has been shown that when using
oblivious efficient policies of buffer management, hosts
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