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Abstract

This paper deals with the Helmholtz oscillator, which is a simple nonlinear oscillator whose

equation presents a quadratic nonlinearity and the possibility of escape. When a periodic external

forcing is introduced, it is calculated the width of the stochastic layer, which is a region around the

separatrix where orbits may exhibit transient chaos. In absence of friction and external forcing, it

is well known that analytical solutions exist since it is completely integrable. When only friction

is included, there is no analytical solution for all parameter values. However, by means of the

Lie theory for differential equations we find a relation between parameters for which the oscillator

is integrable. This is related to the fact that the system possesses a symmetry group and the

corresponding symmetries are computed. Finally, the analytical explicit solutions are shown and

related to the basins of attraction.
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I. INTRODUCTION

Oscillations and waves are ubiquitous in nature and are easily modelled through the help

of differential equations. The general equation for the one-dimensional oscillatory motion

of a unit mass particle, can be easily understood using a mechanical analogy. Assume that

the particle moves in a force field which is generated by the potential V (x), then the general

equation of motion may be written as

ẍ +
dV

dx
= 0. (1)

Stated the problem this way, different oscillators may be obtained, depending on the

potential V (x) acting on the particle. Assuming V (x) to be a polynomial function in x, very

few cases with analytical solutions have been studied. Among them the Duffing oscillator,

with a nonlinear term of fourth order, and the Helmholtz oscillator [1] when the cubic term

is used. Obviously higher order terms may be considered, which in general lead to rather

complicated mathematical solutions. These are the nonlinear versions of the oscillator given

by Eq. (1). If only the quadratic term is taken into account obviously the harmonic oscillator

is derived. Another simple case with a non-polynomial potential V (x) = − cos x is the

pendulum equation. It is important to remark that from all these four model equations

complete analytical solutions are known in closed form. While circular functions are the

solutions of the harmonic oscillator, Jacobian elliptic functions are in general, the solutions

of the nonlinear oscillators considered here.

The study of an oscillator of this kind is worthwhile in spite of its apparent simplicity,

because many physical problems of application may be reduced to the analysis of this simple

nonlinear oscillator. The dynamics of the Helmholtz oscillator mimics the dynamics of

certain prestressed structures, the capsize of a ship [2] and the nonlinear dynamics of a drop

in a time-periodic flow [3] or in a time-periodic electric field [4]. It appears also in relation

to the randomization of solitary-like waves in boundary-layer flows [5] and in the three-wave

interaction, also referred as to resonant triads [6].

If it is included a linear friction and a periodic forcing in Eq. (1), it is obtained

ẍ + δẋ +
dV

dx
= γ cos ωt, (2)

where the inclusion of friction and forcing on the system bestows rather different dynamical

behavior as compered with the case without them.
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Even though an analysis in absence of friction has been accomplished for the pendulum

equation [7, 8], as well as for the Duffing oscillator [9]; no similar results are known for the

Helmholtz oscillator. In spite of that, when friction is considered, this system has received

some attention by different authors [1, 2, 10].

A way of studying the Helmholtz oscillator is by means of computational methods. Nowa-

days, the use of a computer allows calculating good approximations to the solution of many

problems. However, analytical methods give important information about the dynamical

behavior of the system. Chaotic aspects of certain dynamical systems are better understood

when the analytical structure is known [11]. Actually, the analytical structure comprises

information about the integrability of the model, and this is useful to assure whether chaos

is possible or not. This link between integrability and chaotic motion has been analyzed for

several models, for instance, the Lorenz model [12] or the Hénon-Heiles Hamiltonian [13].

The Lie theory for differential equations is a powerful method to study analytically a

dynamical system. Actually, this theory was developed originally to study differential equa-

tions. Different techniques developed to solve certain types of equations (i.e., separable or

exact equations) are regarded in this theory as special cases of a general integration method.

Lie theory allows determining when the equation is integrable and its symmetry group.

Basically, a symmetry group of a differential equation is a group which transforms solutions

to other solutions of the equation. In the case of an ordinary differential equation, this

is useful to integrate it, since invariance under a symmetry implies that the order of the

equation can be reduced by one. Hence, for a second order equation, as the Helmholtz

oscillator, two symmetries are needed to integrate it and to write the solution in terms of

known functions.

However, besides the exact formulas and expressions for a generic oscillator, it is impor-

tant to remark that new insights and intuitions can be derived from its study, which may

help to understand the dynamics of other similar problems.

The organization of the paper is as follows. In Section II the solution of the Helmholtz os-

cillator without friction inside the single-well potential is carried out. Also, the construction

of the separatrix map and the expression of the stochastic layer width are shown. Section III

shows when the Helmholtz oscillator with friction is integrable by means of the Lie theory

of differential equations. The symmetries are calculated to obtain the general solution x(t)

and the first integral of motion is written and related to a Hamiltonian function. Also, the
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physical behavior of this oscillator is related to the analytical solutions. And finally, section

IV provides the concluding remarks.

II. DYNAMICS OF THE HELMHOLTZ OSCILLATOR

A. Introduction

The equation of motion of a particle of unit mass which undergoes a periodic forcing in

a cubic single-well potential with friction, reads

ẍ + δẋ + αx − βx2 = γ cos ωt, (3)

where δ, α, β, γ and ω are positive constants.

A Hamiltonian and Lagrangian formalism can be used [14] to derive the equation of a

particle in a potential V (x) with a linear friction and a periodic forcing. The particular

case given by Eq. (3) is derived from a time-dependent Hamiltonian and Lagrangian of the

following form

H(p, x, t) =
1

2
p2e−δt + eδtV (x, t), (4)

L(ẋ, x, t) = eδt

[
1

2
ẋ2 − V (x, t)

]
,

where V (x, t) is the following generalized potential for the whole system

V (x, t) =
αx2

2
− βx3

3
− γx cos ωt. (5)

In this section, it is considered that δ = 0 (i.e., there is no friction). Hence, the equation

to analyze is

ẍ + αx − βx2 = γ cos ωt, (6)

and therefore, Eq. (4) becomes

H(p, x, t) =
1

2
p2 + V (x, t), (7)

L(ẋ, x, t) =
1

2
ẋ2 − V (x, t),

which will be particularly useful to compute the so-called separatrix map. This map yields

a lot of information about the effect of a periodic forcing on the Helmholtz oscillator. In

particular, about the possibility of transient chaos as a consequence of the forcing.
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B. Single-well potential

When γ = 0, the equation of a conservative oscillator is obtained. This oscillator may be

understood as a particle which is situated in a single potential well V (x) defined as

V (x) =
αx2

2
− βx3

3
. (8)

One important feature of this system, easily seen in Fig. 1, is that according to the initial

condition and the energy of the particle, the orbits may be bounded or unbounded. When

the value of the energy Emin = 0 ≤ E ≤ Emax = α3

6β2 , then there exist possibilities of bounded

motions, hence oscillations, while for E > Emax the motion of the particle is unbounded,

that is, the particle escapes to infinity.

Emax = α3

6β2

x = α
β

E

x = − α
2β

Emin = 0

V (x)

a b c

x

FIG. 1: Potential energy associated to the Helmholtz oscillator, which may be seen as the simplest

potential with an escape. Notice that the potential has been chosen to be V (x) = α
2 x2 − β

3 x3,

because in this way α and β are positive constants. The orbits will be bounded only when − α
2β <

x < α
β and 0 < E < Emax. For instance, the bounded orbit with energy E is comprised within

[a, b]. If x > c then the orbit is unbounded.

5



When the particle has energy E in the range [Emin, Emax], then the cubic equation E −
V (x) = 0 provides three real roots a, b and c, (a < b < c), which represent physically the

turning points, that is, the points where the velocity of the particle changes sign. These

roots verifies the following relationships which will be important for further results

a + b + c =
3α

2β
, (9)

ab + bc + ac = 0,

abc = −3E

β
,

and their general expressions are

a =
α

2β
+ (−1 − m)

λ

3
, (10)

b =
α

2β
+ (2m − 1)

λ

3
,

c =
α

2β
+ (2 − m)

λ

3
,

where to obtain the former results, the following parameters are used

m =
b − a

c − a
, λ = c − a. (11)

If it is defined also

∆2 = 1 − m + m2, (12)

then, from the Eqs. (9), it is derived that

α

2β
=

λ∆

3
; (13)

a useful expression which allows to express the values of the roots in terms only of the

parameter m

a =
α

2β
+ (−1 − m)

α

2β∆
, (14)

b =
α

2β
+ (2m − 1)

α

2β∆
,

c =
α

2β
+ (2 − m)

α

2β∆
.
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C. General exact solution

Now the equation of motion Eq. (3) can be solved exactly in the conservative case, i.e., in

the absence of friction and periodic forcing. Hence, the analytical solutions of the periodic

orbits inside the single well will be derived.

The conservation of energy can be used to set the problem in terms of the three roots of

E − V (x) = 0 in the following way

ẋ2

2
=

β

3
(x − a)(x − b)(x − c). (15)

The terms can be rearranged into

dx

dt
=

√
2β

3

√
(x − a)(x − b)(x − c), (16)

and now after a simple integration of the above equation it is achieved the following result

t − t0 =

√
3

2β

∫ x

a

dx√
(x − a)(x − b)(x − c)

, (17)

where it is assumed that the particle lies in x = a for the initial time t0. Now assume the

following change of variable

x = a + (b − a) sin2 θ, (18)

and introducing this result into Eq. (17) it is obtained that

t − t0 =

√
6

β(c − a)

∫ φ

0

dθ√
1 − m sin2 θ

. (19)

The solution of the integral in the right-hand side is given by the sine amplitude of a

Jacobian elliptic function [15] from where it is deduced that√
β(c − a)

6
(t − t0) =

∫ φ

0

dθ√
1 − m sin2 θ

= sn−1(sin φ; m), (20)

where φ is the elliptic amplitude and m is the elliptic parameter. There is a lot of confusion

in the literature about the use of the elliptic parameter m and the elliptic modulus k, which

are related by the expression k2 = m. The notation of [15] is followed here, where sn(u; k)

represents the sine amplitude when the elliptic modulus is used, while sn(u; m) when the

elliptic parameter is used. For simplicity, the elliptic parameter is used throughout.
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Thus, from the last equation is inferred

sin φ = sn

{√
β(c − a)

6
(t − t0); m

}
, (21)

and if the change of variable used before is taken into account, the following solution is

obtained

x(t) = a + (b − a)sn2

{√
β(c − a)

6
(t − t0); m

}
, (22)

which is the general solution for all the periodic orbits lying within the single well. Note

that all orbits are labelled by the elliptic parameter m. This parameter m which ranges

from 0 ≤ m ≤ 1 is in fact the same previously defined in Eq. (11) in relation to the turning

points of motion in the potential well. It labels the energy of each periodic orbit inside the

potential well.

D. Period of the orbits

It is also interesting to calculate the period of each and everyone of the orbits inside the

potential well. For this purpose the following integral has to be worked out

T (m) = 2

√
3

2β

∫ c

b

dx√
(x − a)(x − b)(x − c)

=

√
6

β(c − a)

∫ π
2

0

dθ√
1 − m sin2 θ

. (23)

The last integral represents exactly the complete elliptic integral of the first kind K(m)

[15], so that

T (m) =

√
24

β(c − a)
K(m). (24)

For orbits whose energy is very small in absolute terms, i.e., m → 0, the complete elliptic

integral of first kind K(m) → π
2

and then the period becomes T →
√

4
α
π. This is obviously

the period for the linear oscillations around the elliptic fixed point (0, 0). However for values

of the energy close to the separatrix, which means m → 1, the complete elliptic integral of

the first kind diverges logarithmically in this way

K(m) ≈ 1

2
ln

(
16

1 − m

)
, (25)

and this means that the period also diverges logarithmically for values of m close to unity

T (m) =
2√
α

ln

(
16

1 − m

)
. (26)
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E. Equation of the separatrix

From the general solution obtained before is rather easy to derive the equation of the

separatrix orbit. In fact the separatrix orbit is the orbit with energy corresponding to the

parameter m = 1 and which possesses a period infinity. The sine amplitude of the Jacobian

elliptic function has two natural limiting functions depending on the limit values of m. These

limiting functions are sn(u; m) →sinu, for m → 0 and sn(u; m) →tanhu, for m → 1.

Moreover, if m = 1, then ∆ = 1, a = − α
2β

and b = c = α
β

from Eq. (12) and Eqs. (14).

Hence, the equations in phase space are given by

xsx(t) =
3α

2β

(
2

3
− cosh−2

{√
α

4
(t − t0)

})
, (27)

ysx(t) =
3

2

√
α3

β2

sinh
{√

α
4

(t − t0)
}

cosh3
{√

α
4

(t − t0)
} ,

which has a fish-shaped form. Actually, it is easy to check that ysx(t) and xsx(t) are related

this way

y2
sx =

2

3
β

(
xsx − α

β

)2 (
xsx +

α

2β

)
. (28)

The bounded motions lie in the interior of the separatrix, while the unbounded motions

lie outside. In this case the separatrix corresponds to a homoclinic orbit, since the orbit

connects the hyperbolic fixed point (α
β
, 0) to itself.

F. Stochastic layer

Once the Helmholtz oscillator has been analyzed, it is interesting the study on how the

orbits behave in the proximity of the separatrix when a periodic forcing is applied.

The time-dependent Hamiltonian in Eq. (7) can be used, as it was explained in the

introduction of this section, to study the Helmholtz oscillator with a periodic forcing. This

time-dependent Hamiltonian can be seen as the sum of a time-independent Hamiltonian

H0(x, p) =
1

2
p2 +

α

2
x2 − β

3
x3 (29)

and a time-dependent Hamiltonian

H1(x, t) = −γx cos ωt, (30)
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that is, the Hamiltonian H(p, x, t) can be written this way

H(p, x, t) = H0(x, p) + H1(x, t). (31)

The former Hamiltonian allows analyzing the effect of the forcing by means of an area

preserving map, which is called the whisker map or the separatrix map. This map measures

the energy and phase change of a trajectory close to the separatrix for each period of the

motion [16].

In order to construct this map it is needed to evaluate the change of the Hamiltonian H0.

The total derivative of H0 is the following

dH0

dt
= {H0, H} = {H0, H1} = −∂H0

∂ẋ

∂H1

∂x
= γẋ cos ωt, (32)

where {} is the Poisson bracket.

Since our main interest is discussing the motion of the particle when its energy is close

to the separatrix, it is assumed that γ is small enough to consider that H1 is a small

perturbation. Then, it is close to the separatrix where big effects in the dynamics of the

particle may be expected. The effect of a small perturbation on the orbits of small energy

is negligible.

The method to obtain the separatrix map, when H1 is consider to be a small perturbation,

is standard [16]. The first step is the computation of the energy ∆E. This energy accounts

for the amount of the energy which an orbit close to the separatrix needs to accomplish a

complete cycle, and is given through the integration of Eq. (32)

∆E = γ

∫
∆t

ẋ cos ωtdt, (33)

where ∆t = T/2 = π/ω. Notice that this integral signals the border of the stochastic layer.

This energy is usually written in the following way to be evaluated around the separatrix

∆En = γ

∫ tn+ T
2

tn−T
2

ẋ cos ωtdt ≈ γ

∫ +∞

−∞

dxsx

dt
cos {ω (t + tn)} dt. (34)

From the third equality in Eq. (9) and Eqs. (10) a relationship between the energy E

and the parameter m is found. Expanding around m = 1 up to second order, it is obtained

the following expression 8E ≈ (1 − m)2. This approximation is used later to determine the

separatrix map and its corresponding stochastic layer.
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The change of the phase is given by ∆φ = ωT . The expression for the energy relationship

found before in terms of m, when m is close to 1, suggests that the period of the orbits close

to the separatrix behaves like

T (m) ≈ 1√
α

ln

(
32

E

)
. (35)

In this manner the change of energy E and phase φ from the period n to the period n+1

is given by the separatrix mapping [8]

En+1 = En + ∆En, (36)

φn+1 = φn + ωTn+1,

where the variables (E, φ) are to be understood as a canonical pair. This map contains in

principle the essential dynamics in the region close to the separatrix. Thus, the separatrix

map is given by

En+1 = En +
6πω2

β

γ sin φn

sinh
{

πω√
α

} , (37)

φn+1 = φn +
ω√
α

ln

(
32

En+1

)
.

Another way of measuring the instability is through the calculation of the following

parameter K defined as [8]

K =

∣∣∣∣δφn+1

δφn

− 1

∣∣∣∣ , (38)

from which as a by-product the stochastic layer width is achieved. It supplies the information

about how a small phase interval is stretched. The measure of the local instability is given

by K ≥ 1, because close to the separatrix a small change in frequency may cause a big effect

in phase. The stochastic layer width is given by the value

E ≈ 6πγω3

√
αβ sinh

{
πω√

α

} , (39)

which corresponds to the width of the region close to the separatrix where it is likely to

expect chaotic motions.
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III. DYNAMICS OF THE HELMHOLTZ OSCILLATOR WITH FRICTION

A. Introduction

In this section the Helmholtz oscillator in Eq. (3) is analyzed in the absence of the periodic

forcing, i.e., when γ = 0. Then, the equation of motion of a particle of unit mass reads

ẍ + δẋ + αx − βx2 = 0. (40)

To investigate the integrability of this equation the Lie theory of differential equations

will be used [17, 18]. However, it should be noticed that the integrability of a differential

equation can be also analyzed by means of the Kowalewski’s asymptotic method (also called

the Painlevé singularity structure analysis) and the same result is achieved. For example, in

[19, 20] the Duffing oscillator is analyzed in this manner. Nevertheless, the Lie theory is used

in this work because this approach, in addition to give information about when the equation

is integrable, allows reducing the problem to canonical variables which eases integrating the

equation in a more general and natural way.

It can be seen in [17, 18] that in order to find the symmetry group G admitted by a

differential equation with infinitesimal operator

X = η(t, x)
∂

∂x
+ ξ(t, x)

∂

∂t
, (41)

it is needed to find an infinitesimal operator X+2 such that

X+2(ẍ + δẋ + αx − βx2) = 0. (42)

The operator X+2 is

X+2 = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
+ A(t, x, ẋ)

∂

∂ẋ
+ B(t, x, ẋ, ẍ)

∂

∂ẍ
, (43)

where A(t, x, ẋ) and B(t, x, ẋ, ẍ) are defined as follows

A(t, x, ẋ) = ηt + ẋ(ηx − ξt) − ẋ2ξx, (44)

B(t, x, ẋ, ẍ) = ηtt + ẋ(2ηxt − ξtt) + ẋ2(ηxx − 2ξtx)

−ẋ3ξxx + ẍ(ηx − 2ξt − 3ẋξx),

with the usual notation ωz ≡ ∂ω
∂z

.
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All ξ(t, x) and η(t, x) such that verify Eq. (42) generate infinitesimal operators X as in

Eq. (41) which comprise the symmetries of the differential equation. Also, it is known that

one symmetry can be used to reduce by one the order of a differential equation. Thus,

to integrate a second order differential equation two symmetries are needed. Hence, the

Helmholtz oscillator will be integrated only if ξ(t, x) and η(t, x) are such that they generate

two linearly independent infinitesimal operators.

B. Condition of integrability

Following the procedure to determine the symmetries of a differential equation mentioned

in the former section, Eq. (42) reads

X+2(ẍ + δẋ + αx − βx2) = η (α − 2βx) + δ
(
ηt + ẋ (ηx − ξt) − ẋ2ξx

)
+ ηtt (45)

+ẋ (2ηxt − ξtt) + ẋ2 (ηxx − 2ξxt) − ẋ3ξxx −
(
δẋ + αx − βx2

)
(ηx − 2ξt − 3ẋξx) .

This is a polynomial of third degree in [ẋ] which is zero if and only if the coefficients of

every monomial is zero

[ẋ3] : ξxx = 0, (46)

[ẋ2] : ηxx − 2ξxt + 2δξx = 0, (47)

[ẋ] : 2ηxt − ξtt + 3ξx(αx − βx2) + δξt = 0, (48)

[1] : η(α − 2βx) + δηt + ηtt − (ηx − 2ξt)(αx − βx2) = 0. (49)

From the condition in Eq. (46) it is plain that ξ(x, t) = f(t) + k(t)x, and this result in

Eq. (47) implies that η(x, t) = (k′(t) − δk(t))x2 + xg(t) + h(t). If both results are used in

Eq. (48) it is deduced that

4 (k′′ − δk′) x + 2g′ − (f ′′ + k′′x) + 3k
(
αx − βx2

)
+ δ (f ′ + k′x) = 0. (50)

This is a polynomial of second degree in [x] which is zero if and only if the three following

equations are verified

[x2] : 3βk = 0, (51)

[x] : k′′ + 3δk′ − 3αk = 0,

[1] : 4k′′ − f ′′ + δf ′ + 2g′ = 0.
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These three equations imply that k = 0, hence ξ(x, t) = f(t) and η(x, t) = xg(t) + h(t),

with the following relation between f(t) and g(t)

δf ′ + 2g′ − f ′′ = 0. (52)

According to these results the condition in Eq. (49) is reduced to

(gx + h) (α − 2βx) + δ (xg′ + h′) + xg′′ + h′′ +
(
αx − βx2

)
(−g + 2f ′) = 0. (53)

This is a polynomial of second degree in [x] which is zero if and only if the following three

equations are verified

[x2] : g + 2f ′ = 0, (54)

[x] : 2αf ′ + δg′ + g′′ − 2βh = 0, (55)

[1] : αh + δh′ + h′′ = 0. (56)

The conditions in Eq. (52) and Eq. (54) imply that g = Ae
1
5
δt with A a constant. When

this result is used in Eq. (55) it is obtained that h = 1
2β

(
6
25

δ2 − α
)
g. And finally, this result

in Eq. (56) means that 1
2β

(
6
25

δ2 + α
) (

6
25

δ2 − α
)
g = 0. But, since it is supposed that α > 0

and so 6
25

δ2 + α > 0, there are only two options to verify all conditions.

The first one is when g = 0. In this case h = 0 and f = constant and this means that

η = 0 and ξ = constant. Hence, only one infinitesimal operator is obtained, namely X = ∂t,

and as a consequence, the differential equation is partially integrable.

The second option in order to get two symmetries is when

α =
6

25
δ2. (57)

In this case h = 0 and g = Ae
1
5
δt, which implies that f = B − 5

2δ
Ae

1
5
δt and consequently

ξ = B − 5
2δ

Ae
1
5
δt and η = Axe

δ
5
t. Therefore, two infinitesimal generators are found, namely

X1 =
∂

∂t
, (58)

X2 = − 5

2δ
e

1
5
δt ∂

∂t
+ xe

1
5
δt ∂

∂x
.

In conclusion, only when it is verified that α = 6
25

δ2 the Helmholtz oscillator with friction

is completely integrable. Therefore, there is a lot of information about the oscillator in

this particular case, but there should be noticed that the information applies just for a 2-

dimensional manifold in the parameter space {δ, α, β, γ}. When α �= 6
25

δ2 the oscillator is

only partially integrable and there is no way to write down the solution in terms of known

functions.
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C. Reduction to canonical variables

The infinitesimal generators X1 and X2 defined in Eqs. (58) are a 2-dimensional algebra

L2 since [X1, X2] = δ
5
X2, where [] is a commutator, called Lie bracket, defined in the follow-

ing manner [X1, X2] = X1X2 − X2X1. This Lie algebra can be classified according to its

structural properties [17] as type III because [X1, X2] = δ
5
X2 �= 0 and X1 ∨ X2 = xe

1
5
δt �= 0,

where ∨ is a pseudoscalar product defined this way X1∨X2 = ξ1η2− ξ2η1, if Xi = ξi∂1 +ηi∂2

for i = 1, 2. Actually, L2 is the algebra of the homothety transformations of the real line R,

where X1 is a homothety operator and X2 is a translation operator.

Then, it is known that there exists a pair of variables w and z, called canonical variables,

which linearizes the action of the group G on R and reduce the algebra L2 to X1 = w∂w +z∂z

and X2 = ∂z.

Let w and z be

w ≡ Axe
2
5
δt, (59)

z ≡ Be−
1
5
δt,

where A and B are constants, then

X1 =
2δ

5
ω

∂

∂ω
− δ

5
z

∂

∂z
, (60)

X2 =
B

2

∂

∂z
.

Although it is not the canonical form, there is no need to introduce more changes because

it is simple enough to reduce the Helmholtz oscillator to an easily integrable equation.

From the definitions stated in Eqs. (59) the following result is obtained

w′′ =
d

dz

(
dw

dz

)
=

25A

B2δ2
e

1
5
δt d

dt

((
ẋ +

2

5
δx

)
e

3
5
δt

)
(61)

=
25A

B2δ2
e

4
5
δt

(
ẍ + δẋ +

6δ2

25
x

)
=

25β

δ2AB2
w2.

Therefore, if A and B are chosen such that

AB2 =
25β

6δ2
, (62)

then w” = 6w2, which is easily integrated yielding

(w′)2 = 4w3 − g3, (63)
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where g3 is a constant.

The solution of this differential equation is the Weierstrass function ℘(z; 0, g3), since

℘(z; g2, g3) verifies that (℘′)2 = 4℘3 − g2℘ − g3. Hence, the solution of the Helmholtz

oscillator with friction is w = ℘(z; 0, g3), which is called the equianharmonic case of the

Weierstrass function because g2 = 0 [15].

It should be noticed that g3 = 4w3− (w′)2 is a first integral of motion and when a change

of variables from (w, z) to (x, t) is carried out in Eq. (63), the first integral g3 becomes

I(t, x, ẋ) in this manner[(
ẋ +

2

5
δx

)2

− 2

3
βx3

]
e

6
5
δt = Λg3 = I (t, x, ẋ) , (64)

where Λ =
(

6B3δ3

125β

)2

, and consequently is always a positive constant.

The former result is an explicitly time-dependent first integral which is analogous to

the first integral of the Duffing oscillator obtained in [20]. Also, it can be related to the

Hamiltonian function of the Helmholtz oscillator with friction in the following way. Define

two variables p and q as follows

p =
√

2

(
ẋ +

2

5
δx

)
e

3
5
δt, (65)

q =
√

2xe
2
5
δt,

so the first integral I(t, x, ẋ) can be written as

I(p, q) =
1

2
p2 − β

3
√

2
q3. (66)

Define a function H(p, q, t) related to the first integral I(p, q) as

H(p, q, t) = I(p, q)e−
1
5
δt =

(
1

2
p2 − β

3
√

2
q3

)
e−

1
5
δt. (67)

This function verifies the Hamilton equations, namely

∂H

∂p
= pe−

1
5
δt =

√
2

(
ẋ +

2

5
δx

)
e

2
5
δt = q̇, (68)

∂H

∂q
= − β√

2
q2e−

1
5
δt = −

√
2βx2e

3
5
δt = −ṗ,

and hence H(p, q, t) is a Hamiltonian function. Moreover, by means of Eqs. (68) it is obtained

that

q̈ =

(
ṗ − 1

5
δp

)
e−

1
5
δt =

β√
2
qe−

2
5
δt − 1

5
δpe−

1
5
δt, (69)
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which can be written in terms of (x, t) by using Eqs. (65) as

√
2e

2
5
δt

(
ẍ + δẋ +

6δ2

25
x − βx2

)
= 0. (70)

Therefore, H(p, q, t) is the Hamiltonian function of the Helmholtz oscillator with friction

for the integrable case since the solutions to ẍ+ δẋ+ 6δ2

25
x−βx2 = 0 and the solutions to the

Hamilton equations of H(p, q, t) are the same. Then, two remarks can be made. Firstly, the

explicitly time-dependent Hamiltonian is not a first integral of motion, which is reasonable

since the energy is not constant in this system because of the friction. Secondly, the first

integral I(p, q) can be seen as the energy of a particle in a potential V (q) = − β

3
√

2
q3 and

thus, the Helmholtz oscillator can be regarded as a system with energy I(p, q) at t = 0 which

vanishes exponentially with time.

D. Solutions of the integrable case

1. Case g3 = 0

The equation to solve is (w′)2 = 4w3 whose solution is w = (z− c′)−2 with c′ an arbitrary

constant. The definitions of w and z and the relation in Eq. (62) implies that

x(t) =
6δ2

25β

(
1 + c2e

1
5
δt
)−2

, (71)

where c2 is an arbitrary constant because c′ is arbitrary.

2. Case g3 > 0

The Weierstrass function ℘ (z; g2, g3) for g2 = 0 and g3 > 0 can be written in terms of

the Jacobian Elliptic cosine cn [15] as

w(z) = r + H
1 + cn

(
2
√

Hz + c2; m
)

1 − cn
(
2
√

Hz + c2; m
) , (72)

with c2 an arbitrary constant and where m = 2−√
3

4
	 0.067 and H =

√
3r with r = 3

√
g3

4
.

Notice that, as it was explained in section II C, it is being used the elliptic parameter m

instead of the elliptic modulus k, which are related in this way k2 = m.
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By using the definitions of w and z and the relation in Eq. (62) the following result in

terms of t is obtained

x(t) =
6δ2

100β
c2
1


 1√

3
+

1 + cn
(
c1e

− 1
5
δt + c2; m

)
1 − cn

(
c1e

− 1
5
δt + c2; m

)

 e−

2
5
δt, (73)

where c1 = 2
√

HB and hence c1 is arbitrary because B is arbitrary.

3. Case g3 < 0

It is known [15] that ℘(z; g2, g3) = −℘(iz; g2,−g3). This relation lets apply the result in

Eq. (72) for g3 < 0 this way

w(z) = −r′ − H ′
1 + cn

(
2
√

H ′iz + ic2; m
)

1 − cn
(
2
√

H ′iz + ic2; m
) , (74)

where m = 2−√
3

4
and H ′ =

√
3r′ with r′ = 3

√
|g3|
4

. By means of the relation

cn(iu; m)cn(u; m′) = 1 where m + m′ = 1, it is possible to write Eq. (74) as follows

w(z) = −r′ + H ′
1 + cn

(
2
√

H ′z + c2; m
′
)

1 − cn
(
2
√

H ′z + c2; m′
) , (75)

Hence, the solution may be written in terms of t by changing variables and using Eq. (62)

x(t) =
6δ2

100β
c2
1


− 1√

3
+

1 + cn
(
c1e

− 1
5
δt + c2; m

′
)

1 − cn
(
c1e

− 1
5
δt + c2; m′

)

 e−

2
5
δt, (76)

where m′ = 2+
√

3
4

	 0.933 and c1 = 2
√

H ′B and hence c1 is arbitrary because B is arbitrary.

4. Discussion

In Fig. 2 the two basins of attraction of the Helmholtz oscillator are depicted in the phase

space. The grey region represents the set of initial conditions which end up in the attractor

(0, 0). They correspond to bounded orbits in the phase space which asymptotically spiral

inside the potential well. The white region is the set of initial conditions which correspond

to unbounded orbits, i.e., tending to infinity. The boundary between both sets is formed by
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the stable manifold of an unstable periodic orbit. Actually, this orbit is the one that stays

forever on the local maximum ( 6δ2

25β
, 0) of the potential, which means that all points in the

boundary tend asymptotically to this point.

g3 > 0

x(t) → ∞
x(t) → 0

g3 < 0

ẋ

x

g3 = 0

c2 = 0
x → 6δ2

25β

FIG. 2: Relation between the geometry of the basins of attraction and the analytical features of

the exact solutions when the Helmholtz oscillator is integrable. The grey region is made of the

initial conditions which tend to (0, 0) and the white region is made of the ones tending to infinity.

The boundary between both basins corresponds to the set of initial conditions tending to the local

maximum and whose solutions have c2 = 0. Also the curve g3 = 0 is depicted and represents the

initial conditions whose solutions have the first integral of motion I(t, x, ẋ) = 0. Finally, in dark

grey is shown the region where there are bounded orbits in absence of friction. It is comparatively

smaller than the region x → 0 because the integrable case implies a large friction, since α = 6
25δ2,

and hence dissipation makes more initial conditions end up inside the potential well.

The basins of attraction are related to the analytical solutions via c2 and to check this,

it is necessary to study the asymptotical behavior of the solutions. To calculate the limit
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t → ∞ when g3 > 0 the following change of variable z ≡ c1e
− 1

5
δt is carried out, so the former

limit becomes z → 0. This implies in Eq. (72) that

lim
t→∞

x(t) = lim
z→0

6δ2

100β

(
1√
3

+
1 + cn(z + c2; m)

1 − cn(z + c2; m)

)
z2. (77)

It should be noticed that the Jacobian Elliptic function cn(z; m) is a periodic function

since cn(z + 2K; m) = −cn(z; m), i.e., 2K plays role similar to π in a circular function. In

fact, cn is periodic with period 4K where 2K 	 3.197 because m = 2−√
3

4
, and thus c2 is

comprised within (−2K, 2K). Consequently, if c2 = 4NK with N ∈ Z then

lim
t→∞

x(t) = lim
z→0

6δ2

100β

(
1√
3

+
1 + cn(z; m)

1 − cn(z; m)

)
z2 (78)

= lim
z→0

6δ2

100β

(
1√
3

+
4 − z2

z2

)
z2 =

6δ2

25β
,

where it has been used the following result cn(z; m) = 1 − 1
2
z2 + o(z4) [15]. Therefore, the

boundary when g3 > 0 can be defined to as the points in the phase space whose analytical

solutions have c2 = 0.

When g3 < 0 the result x(t → ∞) = 6δ2

25β
when c2 = 0 is equally achieved. However, now

cn(z; m′) is a periodic function with 2K ′ 	 5.535 since m′ = 2+
√

3
4

, and thus c2 is comprised

within (−2K ′, 2K ′). Nevertheless, also in this case the boundary can be defined to as the

points in the phase space whose analytical solutions have c2 = 0. Also, it is easy to verify

from Eq. (71) that in the case g3 = 0 the solution tends to 6δ2

25β
when c2 = 0.

In summary, the condition c2 = 0 on the exact solutions yields the boundary between the

two basins of attraction, which links the geometry of these two regions in the phase space

with an analytical feature in the exact solutions.

Inside the gray region in Fig. 2, it can be seen in black the region where there are

bounded orbits in absence of friction. It is a small region as compared with the integrable

case because α = 6δ2

25
and then, dissipation is more important than its potential energy. In

other words, many initial conditions which were unbounded orbits without friction dissipate

energy quickly in this case and, as they go by the potential well, are trapped in it.

The existence of a strong dissipation in the integrable case also explains why there is no

oscillatory behavior in Fig. 3. When the orbit tends to the minimum inside the well the

particle is so damped that it goes straight to that minimum.
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x(t)

x → ∞

x → 0

x → 24δ2

100β

t

FIG. 3: The phase space of the Helmholtz oscillator with friction has two basins of attraction

and hence there are three kinds of orbits. Orbits spiralling inside the potential well tending to

the minimum x → 0, orbits tending to infinity x → ∞ and orbits tending to the local maximum

x → 24δ2

100β which correspond to initial conditions upon the boundary of both basins. Notice that

particles are so damped in the integrable case that inside the potential well they go straight to zero

instead of spiralling and so there are no oscillations in the curve x → 0.

IV. CONCLUDING REMARKS

The Helmholtz oscillator is a simple model for studying phenomena which under certain

conditions present a stable behavior of oscillatory kind, but for other conditions the behavior

is unstable (i.e., this oscillator presents an escape). Then, a question of interest is what

happens close to the separatrix when a forcing term is introduced. The effect of forcing

is not relevant for an orbit with little energy (i.e., close to the minimum in the potential

well), because essentially its stable behavior is not altered by the forcing. The width of the
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stochastic layer by using the separatrix map has been computed here. This gives the width

of the energy band around the separatrix, where it is likely that an orbit presents transient

chaos.

An important aspect considered in this paper is the inclusion of friction. To solve the

equation of the Helmholtz oscillator with friction and without forcing the Lie theory for

differential equations is used. We show that the Helmholtz oscillator is completely integrable

only when certain relation between the parameters is satisfied. When this relation is not

satisfied, the equation is partially integrable. Also, we calculate that the symmetries for

the completely integrable case are a translation and a homothopy. Moreover, this two

symmetries are the two dimensional algebra of the homothety transformations of the real

line, and the symmetry for the partially integrable case is a translation.

A first integral of motion is obtained when the equation is integrated by using one sym-

metry. We prove that this time-dependent integral of motion is related to a Hamiltonian

function. The second symmetry allows integrating the first integral of motion to obtain, as

a solution, the Weierstrass function. Finally, we write this solution in terms of Jacobian

Elliptic functions to show that there exists a relation with the basins of attraction of the

oscillator.
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