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E.S.C.E.T., Universidad Rey Juan Carlos

Tulipán s/n, 28933 Móstoles, Madrid, Spain.

Abstract

The theory of complex networks is used to study different aspects of a topology that
we propose to describe the relationships between members of a social group. This
model is a generalized hierarchical model since relations between members of the
same group are also considered. We derive the existence of a natural limit in the
size of a group, and besides, an insight into hierarchical networks is given, which
explains why they are so spread despite its global inefficiency.
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1 Introduction

Network analysis is a tool which has been successfully used in different sci-
entific fields, such as neurobiology [1], Internet [2], the financial markets [3],
the social interactions, etc. A network is just a set of entities, which interact
among each other following certain topology. These elements and the topology
can be represented by a graph. The elements are represented by a set of points,
called nodes or vertices, and the interactions are represented by a set of lines
between them, called edges or links. Then, in the definition of a network, the
first step is to determine the vertices and the property determining if there
exists a connection between any couple of them (the edges).
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It is indeed possible to use a network model to describe a company. Thus, the
nodes might be the employees and the links could be the social relations or
the information flow. Actually, in this paper we are particularly interested in
the study and characterization of the information flow between the members
of a company. The nodes are the employees and the links represent the social
or professional interactions among them.

2 Information flow in social networks

Traditionally, the research in graph theory has assumed that information in
a graph travels through edges without degradation. This approach is useful
to model some particular types of phenomena, like disease spread [4] or virus
infection in a group and error propagation in computer networks [5].

Nevertheless, this is not appropriate when trying to model processes that take
place in collaborative social networks. In order to create a model for this par-
ticular situation, we define a quantity that we call the coordination degree,
which measures the ability of the vertices in a graph to interchange infor-
mation. There are several manners to model this magnitude, but one of the
easiest ways is to consider the coordination degree to be exponentially related
to the distance between the vertices [6]. In this way, we define the coordina-
tion degree γij between two vertices i and j as γij = e−ξdij , where dij is the
distance between the two vertices and ξ is a real positive constant, measuring
the strength of the relationship which we call the coordination strength.

Quantities similar to the coordination degree have been already discussed in
the literature. The most remarkable work in this field is the one by Katz [7],
where the author considers the sum of e−ξdij over all paths to a particular
vertex. However, our model postulates that only the shortest paths are appro-
priate for this purpose. We think that our model is more appropriate than the
one proposed by Katz for several reasons. First, the Katz measure can only be
expressed in terms of the adjacency matrix of the graph, making the analysis
and computations much more complex. Second, the fact that all the paths
have the same priority for the spread of information produces some incon-
sistencies in the interpretation of the results, mainly when considering closed
loops, where the information can be somehow amplified using this approach.
Opposite to this, the coordination degree may be easily evaluated and can be
considered as a very good approximation in sparse graphs, just by considering
that the information travelling through secondary routes is negligible.

Accepting these assumptions, we can define the total coordination degree of a
vertex i in a graph as the sum of all the coordination degrees between that
particular vertex and the rest. Namely, Γi =

∑N
j=1 γij, where N is the order of
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the graph (the total number of vertices in that particular graph). The total
coordination degree of a vertex is a measure of the amount of information that
the vertex is able to receive belonging to that particular network.

In the same way, we define the average coordination degree of the graph as
Γ = 1

N

∑N
i=1 Γi. This average can be interpreted as a measure of the efficiency

of a particular community or organization, since it suggests how much an
individual contributes to the community.

3 The law of diminishing marginal returns

When analyzing the efficiency of social networks in terms of the average coordi-
nation degree, an interesting phenomenon appears (see Fig. 1). The efficiency
of networks does not vary linearly with the order, but it tends to saturate to
a value which depends on the topology of the network.
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Fig. 1. Average coordination degree for 3 different graphs (all of them with k = 4
and ξ = 2). Case (a) is a regular 2D lattice. Case (b) is made of different small
world networks. Case (c) is a random graph.

This result can be seen from the point of view of the well known law of
diminishing marginal returns. This law states that when the amount of a
variable resource is increased, while other resources are kept fixed, the resulting
change in the output will eventually diminish. This is precisely what occurs in
the models, more members in the organization does not produce an increase in
the average coordination degree. This means that the increase in information of
each individual diminishes as the number of members grows. As a consequence,
it is reasonable to think that there exist a maximum group size, since values
greater than a certain N imply marginal returns close to zero.

Actually, some scientists propose the existence of this limit in the maximum
number of members of a social group by other means. Probably the most
important work in this direction is the one carried out by the British an-
thropologist R. Dunbar [8], who related the size of the neocortex (a part of
the brain related to social and language capabilities) and the maximum group
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size for primates. When applying this relation for the Homo sapiens, the group
estimate maximum size is 147.8, or roughly 150.

Nevertheless, the analysis performed in this paper shows that the size of an
organization cannot be only understood in terms of the intrinsic psychological
properties of its members. The relational structure and the properties of the
information transfer on the network may also play a definitive role.

4 Information in hierarchical networks

In this subsection, we focus on the analysis of social networks having hierarchi-
cal topologies [9]. Examples of graphs having this structure are regular trees.
A regular tree is a regular graph (all vertices have the same degree c) that is
connected (there is a path joining any two of its vertices) and that contain
no circuits (there is no path going from one actor to itself that does not visit
the same vertex twice). Every regular tree has a particular vertex, called root
node or top of the tree, that is the most central vertex in the graph.

In order to generalize hierarchical topologies based on regular trees, we work
with a regular tree that each vertex has c−1 order 1 lower neighbors and c−2
order 1 neighbors in the same level (see Fig. 2). The edges that link vertices in
different levels and the edges that link vertices in the same level, have different
coordination strength, and hence, there are two different coordination degrees.

Fig. 2. Representation of a hierarchical topology with links between member of the
same group. Notice that there are two different coordination degrees α and β.

Let ξ and ζ be the coordination strength which measures the strength of
the relationship between vertices in different levels and vertices in the same
level, respectively. Then, the coordination degree between two vertices order
1 neighbors in the same level is α = e−ζ , and the coordination degree between
two vertices order 1 neighbors in different levels is β = e−ξ. Our objective
is to obtain a formula giving the information flow, for the former topology
representing social networks, in terms of the coordination degrees α and β.

As it is mentioned in the introduction of this section, we assume that the
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information travels through the shortest path. This implies that α has really
an effect on the model only when α > β2. In that case, the following formula
for the coordination degree is obtained

Γ̃i(α, β) =




(c−2)α
1−(c−1)β

[
β−βN−i

1−β
− 1−[(c−1)β2]N−i−1

1−(c−1)β2 (c − 1)i+1βi+2
]

+β−βN−i+1

1−β
+ [1 + (c − 2)α]1−[(c−1)β]i

1−(c−1)β


 i ≤ N − 1

1−[(c−1)β]i

1−(c−1)β
i = N

(1)

When α < β2, the shortest path is through the 1 order upper neighbor, as in a
traditional hierarchical tree. Consequently, the former equation cannot be used
to compute the coordination degree. However, from Eq. (1) it is possible to
derive the coordination degree in a traditional hierarchical tree, by introducing
the following change α → β2. Hence, the coordination degree in our model
can be written in the following terms

Γi(α, β) =




Γ̃i(α, β) α > β2

Γ̃i(β
2, β) α ≤ β2

(2)

As a basic ingredient of our model, it is important to remark the common
perception that the number of close relationships a person may have within a
community is necessary limited to a quite small number, independently on the
type of organization. This may be the consequence of the fact that establishing
close relationships with people is normally very time consuming, and time is
a limited resource for every individual.
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Fig. 3. When the constraint (c − 2)α + cβ = cons. is included in the model, the
coordination degree is a curve depending on α and β whose maximum is at α = 0.

Therefore, it is reasonable to think that each member devotes time to his neigh-
bors proportionally to the information obtained. That is, each actor shares his
time between neighbors in the same level and neighbors in different levels, pro-
portional to α and β respectively. Thus, there is a constraint on α and β given
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by (c − 2)α + cβ = const, which is a plane in the space {α, β, Γi}. Hence, the
coordination degree is a curve, the intersection of that plane and the surface
defined by Γi (see fig. 3). And the result is that the maximum information is
received when each actor devotes all his time to neighbors in upper levels.

5 Conclusions

The traditional hierarchical tree represents a topology globally inefficient as
compared with others. However, it is rather spread because this structure
arises when each actor only looks for maximizing his information. The result
is a structure which mainly benefits the higher levels, by providing them a
higher information centrality and improving their dominance of information.

When edges, between vertices with the same upper neighbor, are added to a
hierarchical tree, we show that the information each actor manages decreases.
This means that a hierarchical tree is a stable network against relationships
between members of the same group. This stability can be seen as another
reason which explains why hierarchical trees are so spread in companies all
over the world. A hierarchical tree backs the leader’s superiority of information
despite the strength of the relationship which links the members of a group.

Nevertheless, it should be noticed that in our model edges between vertices
in the same level with different upper neighbor are not included, or between
vertices in different levels. This study may yield a different result.
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